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PART 1II

ASYMPTOTIC EXPANSIONS OF SOLUTIONS

OF DIFFERENTIAL EQUATIONS

0

CHAPTER 1

SOLUTION OF THE RADIAL DIFFERENTIAL EQUATION FOR TM WAVES

CONVERGENT SERIES SOLUTIONS AROUND x = 0
We consider equation (1=50), PART I:

x&x:;l] R(x) = 0 .(I 1-50)

The origin x=0 is a regular singularity of this equation. In order
to obtain convergent series solutions around this polnt, we follow
the classical method of Frobenius (9 pp. 396-=404). First, write

the equation in the form:

[x%+(a+b) x+ab]x2 R(x)+cx? B?x)*[x“+gax3+(aaev(v+1))xa-v(v+1)-

+(a+b) x-v(v+1)ab] R(x) = 0 .
0
Substituting the formal series R(x) = %io nxn+°r the equation

ylelds: &Eb anxn*af(x,n+a) = 0, where:!



1«2

£(x,n+0)=(n+0) (n+o=1) [x2+ (a+b) x+ab 1+ (n+0) ex+x*+2ax 0+ [ a2av (v41) 1x2=
“v(v+1) (a+b)xev(v41)ab = £ (n+0)4f) (n+0) x41, (ne0) x2425 (ne0) £+
*f&(ﬂ*@)xab

The functions appearing in the last expression are defined as
followss

i

fo(n+a) 7#5£(n+6)(n¢aa1)-v(v+1)]ﬁab(n+e¢v)(n+d-vai) (1<1)

]

£, (n+0) = (a+b) (n+0) (n+0-1)+c(n+c)=(a+b)v(v+1) (1-2)

(n+0) (neo=1)+a2=v(val) (1-3)

fg(n+d)

f5(n+0) = 2a (1=4)

1 . (1=5)

fACﬁ*a)
Indicial equation:

£,(0) = ab(o#v)(g-v-1) = 0 (1-6)

with roots:

= vel ,  0F -v (1-7)

Reccurence formula for the coefficlents:

apf,(n+o)vay 1) (n+o-1)+a, of,(n+0=2)+a, . f(n+o-3)+

L

i

=0, m= 1,2,3p999. . (198)

*&n94f4(3¢5’4) =0 3 =m

v is a positive parameter, since negative values of v do not yleld
modes independent from the ones corresponding to positive values
of v. We have:
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If 2v+4l 1s not an integer, the method yields two independent
solutions. In particular, we define as Rl(x) and R, (x) the
solutions eorresponding to 0'1 = v+l and 02- -V, respectively ’
with a=1, 1.e.

0=
Ry (x) = V*1[1+n_1 &, % ], |xI< min(lal, b)) (1=10)
Ry (x) = V[l-LZ b, xn] s |x| < min(la}, |b] ) , 2velfinteger(1-11)

Foxr the coefricient.s a, we use (1=8) with a:alav-o-l and a,= 1,
foxr the bn 8, again (1=8) with 6-0'2=-v and b : 1. We can find
that:

8= = £9(0))/1 (0,41)== g% , by=-t, (6,)/f, (0,41)=- 5&= .

Also:
lal if [al<Ibl N
min(a], |b]) = [ Il if bl {2 . (1-12)
We observe that R, (0) = 0 and R, (o) =00 . x=0 is a branch point

for both solutions.

If 2v+l 1s equal to a positive integer, (1-10), together
with (1-8), continues to define R,(x). The second independent
solution R,(x) in this case, has a logarithmic singularity at
. ¥=O &nd 1is going to be found later.

Analytic Continuation of R pAX) _in the
x-Plane: We obtained two serieé representations for the solutions
R, (x) and R, (x) of equation (I 1-50). They are valid only within
the eirele |x|<m1n(|a.| »|bl ), where they both converge uniformly
and sbsolutely. We proceed to obtain representations for these

par ticular fu_nct,;ons valld in the whole right-half plane, where

X varies from 0 t0 o0 »

We use a bilinear t.ranst'omation of the independent variable

in the form:
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b=k x =P (1-13)
The constant p is conveniently chosen in each case 80 as to
optimize the rate of convergence of the resulting series in t.
with (1<13); 1s shown in figure (1-1). The half=plane to the
right of the perpendicular bisecting the line between O and =p
{shaded in figure (1-1)), maps within the unit cirele lt|= 1 of
the t-plane. In this plane x varies from O to s along a straight
line in the fourth quadrant, or along the real axis. Corresponding-
1y, t varies from O to 1 within the unit cirele. The singular
points of equation (I 1=50) map as follows:

x=0 t=0

X = ~a t = a/(a=p)

X = =b t = b/(b=p)
oo t=1 .
The equation becomes:

W

W
9

x

ﬁ + [:‘,‘“L_‘A,,:'._:?,? A ——— ,/i:' + 2, ! g *
at? | [(p-a)t+al[(p-b)t+d] t-1] 2%

[(psg) tea  p° v<v=~1>]

e iy o Smmimeeen| B = O 1=14
(p-b) t4b (t-1)F  t3(t=1)2 ° (1-14)

It now has three regular singularities at t=0, t=b/(b-p),
t=a/(a=p) and an irregular singularity at t=l. Thus, the trans-
formation has preserved the nature and rank of the singularities,
mapping them at thelir image points in the t-plane. This 1s a
well=known property of bilinear transformations (9 p. 437). If p
1s chosen as shown in figure (1-1), the singularitlies x=-a and
x==b map outside the unit circle in the t~-plane. A power serles
solution of equation (1l-14) around t=0 will converge uniformly

and absolutely for [t]{1 and would provide a representation valid
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over thé whole 1ﬁté'f'va1 of‘ mter‘e‘st 04 R’exéeo. Thé numerical

used for an \x\max 3 or 4 times larger than the lxlmax of (1-10)
and (1=11). It 18 not necessary to map x=-a and x=-b outside the
eircle {t|= 1. Depending on the case under consideration, a value
of p ean be chosen, that maps either or both of these points
inside |t|= 1, but whieh ylelds better series in t. The radius
of convergence is now: [t|= min('gi ‘—-l%<1., nevertheless,
larger values of x can be used with such series, that may ecarry
one farther. In thls connection,; notice that x varies only along
& straight line in the fourth quadrant, or along the real axis,
from O t6 s and that oné is only interested in reaching up to
such values of x after which the asymptotic expansions of Ri(x)
and Ré(x) can be used. The faet that a series expansion can be
found, which is valid for all x from O to so, has no practical
slgnificance from the computational point of view. A series valid
within a smaller, finite region may be better if it can be used
for larger values of x. These facts were verified numerically.
Ip| should be chosen as large as possible, but not as large as to
result in a very small convergence circle in the t<plane. In each
particular case an optimum value of p exists.

For all Cases I to VI, Chapter 3, PART I, p was given the
following value:

=2 , t= x§é§ ’ x = %%% . (1-15)

We will develop the series expansions in t for Rl(x) and R (x)

follows identical lines. Now, X==a maps on  t=-1 and (lsl#)
becomes:

(t=1)*(t+1) (t+ =2 )taa"(t)+2[ (t=1) "0 (£=2)7 (t41) (£ =2

2a -b 2a =b 28« b)J



b
2a=

'tQRQt)#fggzg(t*i)étgﬁv(v+1)(t*l)(t' =) IR(t) = 0 . (1-16)

ity Bl o B o fBRO e e
Inserting: R(t) = 2. e t the equation becomes:
n=0

* n+so = =
S e, t"9f(t,n+e) = 0, where:
n=o

£(t,0+0) =(n+0) (nv0=1)[ 04 (1=3) t74(2-30) t*+2(he1) 134 (20e3) t24

+(1-30) teh]+ (n40) [ 265+ (h=3) 534t 44 (10-6n) t7+ (8h=6) t3=(3n=1) t 1+
+[2a2(n+1) v (val) Jt*e[4a2(hel) 4 (1=h) v(val) 162+ (14h) [ 2824v (v41) 1t2+
#(h=1)v(v+l) t=hv(vel) = é%; fm(n¢e)t@ .

The following definitions were usedt

h = b/(2a=b) (1-17)
£o(x) = h[x(x=1)=v(v+1l)] = h(x+v)(x=v-1) (1=18)

(1-3h)x2+(hal)v(v+1) (1-19)

1

fl(x)

]

£,(x) = (2h-3)x%+(6n-3)x+(h+1) (28%4v24v) (1-20)

£3(x) 2(h+1)x2+8(1=h)x+4a2(h+1)+(1=h) v(v+1) (1-21)

£,(x) = (2-3h) (xP-x) ~4x+282(h+1) =v(v41) (1-22)

£5(x) = (n-3)° (1-23)

£6(x) = xP+x (1-24)

(1]

Indicial equation: to(G) = 0 with roots:

Recurrence formula:
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(]

6
b2 f_ (n+o=m)

0 ; e=1 : e ,=0, )=1,2ys0. (126)
m=o *n-n’m ’ = e

e}

For 0 = 0y = v+l we alwayse obtain a solution:

R(t) = kt%(2+ o 7] (1-27)
n=1

where K 18 a constant and the coefficlents e, are determined
using (1-26) with ¢ = v+1. If o 0y-0,= 2v+¢1 1s not an integer, use
of (1=26) and (1=27) with ¢ = =v ylelds a second independent
golution. If 2v+l is equal to a positive integer, the second
solution is logarithmic and will be found later.

For n=1 equation (1<26) yields: éléréfl(é)/f°(6¢1): since in
any caseé! o(o=1) = v(v+l), we obtaint

& == -" -]'- F 1“ R ‘—-:“

Substituting in (1-27) we obtain:

R(£)=R(£2) 7 (1452) L1404 3 = 2p) &= (140(,,y)+0(,2)] =

= (2;)“ x[1-0 5? +0(x2)][1+(a+ ;h)%i +°(xg)3 =
- K 1=] - K a
T Gere M REOGR ] = 7 X )]

Taking X = (2a)° and referring to (1-10),(1-11) and the remarks
following them, we see that the two solutions defined by (1=27),
(1-26) can be identified with Ry (x) and R,(x) of (1-10), (1-11)

in the corresponding cases °1’ v+l and 62- ‘=¥ . That 18!
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]

x%(1+ E ax"] = '(éa)etqfi*z o, t"] . (1-29)

Ri(x)
3

2
integer. If 2v+l 18 equal to an integer, R2 will be found later.

The series in x converge uniformly and absolutely for
|xIKmin(lal, |b) ), those in t for |ti{min(l, |h|), providing the
analytic continuation of Rl(x), ﬁa(x) into the right half-plane

Solution R, 1s given for o=v+l, R, for o==v, if 2v+l 18 not an

shown in figure (1-I1).

2v+l IS EQUAL TO AN INTEGER

In this case the second independent solution R,(x) of
equation (I 1=50) becomes logarithmic. The preceding analysis
is valid,; without alteration; to the solution\ﬁi(x) with o=v+l.
In the biconical antenna of PART I, as well as in other problems,
the second solution Rz(x) appears indirectly. What is actually
directly involved is Ra(x), the solution whic¢h satisfles the
radiation condition at infinity, corresponding to an integral
value of v. Evaluation of Rk(x) for small x, where its asymptotic
series representation can not be used, involves both R,(x) and
R,(x) of integral order. An equation like (1-54), PART I, must be
available to provide the analytic continuatlion of R,(x) in the
vicinity of x=0. Thus, not only Ra(x), but its complete asymptotic
expansion for large |x|, equation (1-53), PART I, must be known.

Following Whittaker and Watson (16 pp. 200-201), we put:

Bg(x) = 1lnx Bl(x) + 8(x) , (1~-30)

00 :
where R (x) = Z a x®"¥*1 , a =1, 1s the first solution obtained
= m=o0 -

in the preceding section, and:



8(x) = :i b, xn-v . (1=31)

n=o -

We write equation (I 1=50) in the following form:

?o‘(X)xaR”(x)wl(x)xR'(x)-rfé(x)R(x) =0 , (1-~32)
where!

(333) ——

Miotx) = x24(aab)x+al

?2(1) = x4+2ax3¢[a2=v(V¢i)]xéav(v¢1)(a$b)x-v(v+i)ab « (1-35)

Substituting (1-30) into (1=32) we obtain:

R)R()
(x)x2[R"(x)1nx+2 1(x‘ - i +S”(X)]+T (x)x[Rl(x)lnx+

X 22

~,1( ) +S'(x)]+'r (x)[R (x)1nx+s(x)] =0 ,

+

or, since Rl(x) satisfies (1=32):

7o (x)x28"(x) 47, (x)x8( )47, (x)8(x) =

=T (X)[Rl(x)—zxﬁf(x)]e?l(x)R (x) . (1=36)
Substituting (1-31),(1-33)-(1-35) and R, (x)= Za B+ 40 the
above equation, we obtain: m=o "
:i b, *"Ve(x,n=v) = :i 8 xm*v+1r(x,m+v+1) ’ (1-37)
n=o 2 m=0
where:
£(x,n=v) = (n-v)(n-vel)[x* +(a+b)x+ab]+(n-v)cx+x4+2ax +[a -
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and:
F(x,m+v+l) = =[2(m+v+1)=1][x%+(a+b)x+abl=cx = zz‘ﬁj(m+v+1)xi .
- J=o0 ¢
The following definitions were used!

11

£, (n=v) = ab[ (nev) (n=v=1)=v(v+1)] = abn(n-2v-1) (1-38)

(a*b)(n5V)(ﬁ‘V51)$(niV)éi(a+b)v(V¢1) (1339)

1

fl(niV)

]

fé(ﬂﬁV)

r3<niV)

]

2a (1-41)

[
-
sy
1]
&
(301
~

[}

Fo(n+v+l) = =ab[2(m+ve1)-1] (1-43)

i

Fy(mevel) = =(asb)[2(mevel)=1]c = -2(a+b) (mev+l)+2b (1=44)

?2(m¢v+1) =2(m+v+l)+1 . (1-45)

Equation (1-37) can be written:
R Napy iy o G2V mo L
Z b x"f(x,n=v) = x*""* 5 a xX"F(x,m+vel)
n=o ° m=o °

and shows, incindentally, that, with f(x,n-v) and F(x,m+v+l)
being polynomials in X, it can not be satisfied unless 2v+l 1is
equal to a positive integer. In its right-hand side put:

meavil =n .  (2-46)

It becomes:

2 o
Z bx'f(x,n-v) = Z  a 2 F(x,n=v) .
n=o0 n ’ nﬁév*l n=2v=-1 \ Ay

Since 8_1% 8_gFccee= 0O , we can also write it as follows:

LA



—

Z.xnb f(x n=v) = Z a x® P(x,n=v) . (1=47)
= =o D= =2v=l

n=o n=

The lowest exponent of x 18 n=0 and 1ts coefficient is bofé(oav)s
=0. Generally for 1{n<2v we have:

b f, (n v)+bn 1f1(n v-1)+bn 5 2(n v-2)+bn 3! 3(n-v-3)+

+bn64f4(n-\f-4) = O H bimf 0 y I = 1’2’3900' é (1‘48) e
For all these values of n we observe that f,_ (nsv) # 0, permitting

to use succéssively the recurrence formula and obtain bl’ b2, ‘e

ey béva For n=2vs+l, 1.e. for the coefficient of xaw'1 in

(1<47), we have!

b f. (v+1)+b o3 (v)+b2v 1%a (v= l)+b2v -2 3(V 2)+b2v th(v =3) =

2v+l- o
= aoFo(v+1) = =ab(2v+l) . (1=49)

Now, however, fo(w;) = 0, according to (1-38). In order to
satisfy (1-49), we choose conveniently the value of b, left
undetermined so far. Notice that bl’ b2”"' bzv’ determined 8o
far with the use of (1-48), are all proportional to b,. In fact,
we can write:

bn:’ bodn ’ ng 1 , n= 0,1,2’399999 (1950)

and use (1=48), with d in place of b , to determine thé numbers

do’ dl, PORRERR) d2v completely. with initial conditions: 4. =1,
d_y= d_p=.++»= 0. Then, (1-49) 1s satisfied if we take!

ab(2v+1)
b°= - g ’ == . (1-51)
* fl(V)-rdQv 1! 2(v 1)+d2v_2f3(v 2)+62v 3f4(v-3)

For the b, 's (n = 1,2,¢0..,2v) we then use (1-50).
For n) 2v+l equation (1-47) ylelds:
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b f (n=- v)+bn 1fl(n Ve 1)+bn 2fa(n v-2)+b, 3f3(n-v-3)+b 4r4(n-v-4)_

= a F (h=v)+a,

n=2v=1 oFy(nevellea, o oF,(neve2) . (1-52)

n-2vs
Remembering that a,= 1, a_j=a_p,=....= 0, we see that this equatien
is vaiid féf ail 1ntegfai vaiués of n; 1ne1udiﬁg (i~48) as a

I

,=b 4=0, b, asin (1-51) . (1-53%)

Putting n=0 in (1=52), we get: b f (0-v)+b_,f,(0-v=4) = 0 ; since
r (0=v) = 0, according to (1-38), we obtain b -4= 0. By repeated
applications of (1-52) we also findt b_g= b_g=.....= 0. Thus,
conditions (1<53) are enough to satisfy all requirements for the
coefficients b, of 8(x).

The process 80 far has left b2v+1 undetermined. This deea

it can be satisried by the set:

bo, bl’ b2, e s b oy bav*lg b2v+2’ LR N )
1t can also be satisfied by the set:

bo+ka 2v 1— b ’ bl+ka 2 bl [} s e o0y b2v+l+ka 2v+2+ka1’ ee ooy

where k 1s a constant. The reason is that the set:

492791; Q"QQZV; Oy coeey 393 alp coess
satisfles the homogeneous part of (1-52). Actually for:

n = 2velsm , b =D B (1-54)

2v+1+m

equation (1-52) becomes:

B f (m+v+1)+B lfl(m+v)+3m gf (m+v= 1)+Bm 31 3(m+v-2)+B 4r4(m+v-3)_

= ymro(m+v+1)+a 1r1(m+v)+a 2r2(m+v-1) . (1-55)
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Its homogeneous part is satisfied by the set Bgs 875 sseees , 8B
& comparison of (1=38)=(1=42), for n=m+2v+l (or n=v=m+v+l), with
(1=1)=(1<5), for n+o=m+v+l, reveals; equations (1=1)=(1-5) with
n+o=m+v+l give the coefficients of the recurrence relation (1-8)
for the coefficlents a, of Rq(x).

We can choose b2v+1‘ B, arbitrarily. The simplest choice is:
Povsl = B = 0 (1-56)

in the pf@ééés of using (1652) fof thé b»‘s. A ncn=vanishing
Rﬂ(x), contain the additive solution b2 +1 1(x), which éan be
discaraéa in the definition of the second independent solution
Ry(x). To be definite then, we define Ré(x) as follows:

R, (x) inx Rl(x)+x V:E b, 2 3 Ixl<nin()al, (b))

Boysy= O » b, a8 in (1-51) . (1-57)

For the rest of the b 's we use (1-52),(1=53). This definition
leaves no ambiguity as to which particular R,(x) we consider.

We use the same transformation”(l-ls), as for Rl(x) In analogy
with (1-30) we write:

Ry(t) = 1n £8E R, (t)48(t) , 8(t) = Zi et (1ese)

For a moment, designating the coefficlents of (1-16) by T,(t),

Ty (t), T,(t), we can write this equation as follows:
T, (VR"()+7 (L)REL) 4T, (¢IR(L) = 0 . (1-59)

Substitute (1-58) in the above equation:



T, (t)‘ES"at;n(fj_;{)R/!:7 B 7_;57

v han,(t)(1n(BEHR, 8] = 0
t(1=t)

8ince Ri(t) itself satisflies (1<59), we obtain:

® (4)87(t)en, (£)8
Q

Writing T_(t), Ty(t), T,5(t) in full as in (1-16) and using:
8(t) = 3 ¢, % , Ry(t) = (2a)""1t"*1[1+z oyt

n=oe m=1 m
we obtain:
Z t*Ve f(t,n=v)= (2a)"*1z e tm"""'l[(l 2t) (t+h) (t=1)2(t+1)4+
n=o m=o0

4t(t-1)3(l—h)+2t(t-l)2(t+1)(t+h)¢(m+v+1)2(t-1)2(t261)(t+h)] =

(aa>V*1:ibe B4l gt mevel) (1-60)
ms
where!

l"( t,m+vel) = (m+v+1)[2t5+(2h 4)t -4ht3+4t2+(4h 2)t-2hl+

o[ (20) t¥+4(n-1) t3s (2-40) t2n] = 3 Fq(mevel)td (1-61)
q=0
f(t,n=v) = Zf (n-v) td . (1-62)
g=o %

The functions appearing in the last equation are exactly the ones
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that appeared previously in R (t); thus, fo(x) t°‘f6(x) are
defined by equations (1=18) to (1=24). On the other hand, the
following new functions were introduced in (1=61):

F (x) = =h( 2x=1) (1-63)

]

Fl(x) (4h=2)x (1-64)

[

hx+2-4h (1=65)

- Fy(x)

“ihx+d (he1) (1-66)

FS(X>

(h-2) (2x-1) (1-67)

"

F,(x)

Fs(x)
A8 with R (x), we call:

6= Ho(2a)™* g 3 g=1 38,70, m=1,2000  (1-69)

and write (1=60) in the following form:
< .n, . 2vel 2 -
H 2 thg f(t,n=v) =t Z ey t F(t,mev+l) . (1=70)
°n=0 O m=0

For 1<{n £2v this equation yields the following recurrence
formula:

égosn gfqfn=v=a) =0 3 g=1 3 g,=0 ,m=1,2,.. (1-71)

with the use of which g, 8,y +¢++, 8,, 8re evaluated. For n=1
it yields:

g = -fl( V)/f (1=v) = =ve % = %‘ . (1-72)

For n=2v+l equation (1-70) yields:

‘B‘l

Hol8oya1Fo (V41485 F1 (V) 485, 1 £ (V=1) 4.0 48y, sTg(v=5)]=F (v4l)=



= <h(2v+l) .
Bince f (v+l) = 0, according to (1-18), this equation serves
simply to define Hy» 1.6,

h(2v+1)

52vf1(v)*52v 185 (V-1)48,, _pf3(v=2) 48, 3’4‘”'3)*

Hys =

+52v ar (v~ 4)+52V -5 6(v-5)

For n) 2v+l equation (1-70) yields the following recurrence
formula for the remaining coefficients g,*

é;ogn_qr (nev=q) = éo é; ndv-l-q Fq (n-v-q) . (1=74)
As before, thé process has left 8oy undetermined. It will be
chosen in such a way as to identify the present solution Re(t)
with the solution Ra(x) defined explicitly in (1-57). Comparison
of (1-58) with (1-30),(1-31) and (1-15) expresses this require-
ment as follows:

8(t) = 1, (za)v*l -5 8 t" = 8(x) = x™"p_ 5 a ", (1-75)

n=o ° n=o

where as in (1=50) we can write b = b oln for all n. Substituting

- n
t = =X = X2+ 2971 we obtain:

H 2; sn(ga)n(1+ :E)Ven = ;?;327¥12i dn;n . (1-76)

Ven _

(1+ g' 1+(v-n) vecsves

3
-l

—_— (1=73)



(v-n)(v-n-l)...-(V-n'm*l) (Zﬁym

e s Feissens . (1‘77)

ml

If v=n 18 equal to a positive integer, 1t reduces to a finlte
polynomial. Assuming v itself to be an integer (1f v=n+1/2 the
procedure remains the same), we write (1=76) as follows:

(. x (v=1),
HQ{1+V %g K~Z——( )2+....’+( ) +

51

+gl( )[1+(v-1) +.....+( )V'1]+

IR RS I B B S Y R R S B NN N S B Y RN R R B B R R A 3

e (XY o
v+l X
+8y41 (35) (1= 55 ¢
X_ V42
+gv+2( L) V*e[1.2 %= 5=

50 0 4.0 8 0 08 50 8 8 00 00 e b LS INE P ELEIREEESEES NS

v(v+l)

e () 2V 1y En 4 (%) 2 Ta
+52V(2&) [1 v 2a * MéTW" (23) +....J+
(v+1) (v+2) :

2v+l - e X 12,
+52V+1 281) [1 (V'.'l) —— - "é. = (25) +Qoo!]*‘
+6hqoooop.ggo-o.goco-oognuoog-oooogo 8 =

= "E---'[1+d X+ +0x2V* 14 x2V*2, ]

— (2 )2v+1 1 [ N N ) 2v+2 o000

We immediately deduce that:
. bc )

H, = (28) 2V *+L (1-78)

and from the coefficient of x2v+1
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(= 1)v+1 (= 1)v+3 y(v-l)

+( 1)V+2vs
V+2 e — s $ieso00
5 V43

Bavel = 8v+1
A pd & V(V 1)oao¢(v-m+2)

Lo anVém N _ N L -

i .+(-1) = (m_l )(. . - 5V+‘m+“ ) 5+V82v A (1-79)

For v=n+l/2 this formula is modified by inclusion of some addi=
tional terms. With this definition (1=74) can be used to yield

;11Hgﬁ_smtorin;z2xﬁliwThe‘aecnnd solution
in (1-57), can also be written:
H (29.) V'.'l

R (x)—R (t)=1nx Rl(x)+ &fﬁ[l+zlgntn]q 1ti<min(1, |kl ) (1=80)
n=s

t
and 80, in connection with (1-29), can be analytically é¢ontinued
into the right-=half x=plane shown in figure (1=1).

Equation (1=-78) can be checked easily for low order functions
(for example v=1,2,3), using directly the definitions (1-51),
(1-73). For large v the numerical computations of Chapter 3,
PART I, checked all relations and proved them correct. In Cases
I and II, both series in x and t were useéd to evaluate Ri(x),
Rg(x); the results were identical. It was also found that, while
the series in x for both R,(x) and R,(x) had the same rate of
convergence, the series for R,(t) was better and could be used
farther than the series for Bg(t)@ The coefficients 8n increase
faster than the e 's. As the order v of the functions increases,
both e and g,  increase faster, rendering the rate of convergence
of both series in t poorer. In any case, the series in t could
be used for larger |x| than the series in x and were able to
carry the computations into the region of valldity of the
asymptotic series (especially for x close to the real axis).
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ASYMPTOTIC SOLUTIONS Rs(x), R,(x) AROUND x =oe

AS X->s0 the coefficients of R/(x) and R"(x) in equation
(I 1-50) vary as!
v(v+1)

-2) ’ 1+ =—$» - 2 = A 1+0( 1) .

%

(x+a)(x+b) (x

Point x=o0s 18 an irregular singularity of rank 1 (10 pp. 58=77).
We follow the method of Chapter III in reference 10. First, we
eliminate R'(x) by putting:

R(x) = = y(x)v(x) . (1-81)

Points x=-a and x=-b are branch points of the general
solution of equation (I 1-50) and in the cut x=plane with branch
lines from x=-a and X==b to o6 (along the negative real axis

preferably), the functions R(x), y(x)=y|(x+a)/(x+b), v(x) in
(1-81) are analytic and single-valued. We obtain for v(x):

]v'(x)+[(y/b0'+(y/&)2+(y/&)f

o 7
(x)+[2(y/y)+ (x+a)(x+b) (x+a)(x+b)

o vivel)
%0 " ’;E’”’JV(X) :

+1+

~¢/[2(x+a) (x+b)] . 8o, we get!?

]

But y/y
v/(x) + q(x)v(x) =0 , (1-82)

where?
e vivel)  1/4  3/4 1/2

G Gea? | () (o) |




-‘(l"' x‘) ] .
For |x|)> max(|al,[b]) we can use the binomial theorem to obtain

the expansion:

a(x) = anx o (1-84)

n=o

A few manipulations ylield!

%= 1 (1-85)
W= e (1-86)
Qp= =v(v+l)-cb (1-87)
a3= e(b%1) (1-88)

®6 000000 é0bb000ivessnn

e s 2 oy 3 3(n=1
qn=f(-ti)n[bn"l(%g—1 - %—c ac)*an’l(ilér —ii—))]. n=3,4,..0 +(1=89)

We now try to satisfy (1=82) with the formal series:

v(x)= e‘“"zrxn PR, n £ 0, Ixi>max(lal,bl) . (1-90)

Assuming q_ = h_ = 0 (m=1,2,3,....) and substituting (1-90) and
(1-84) 1nto (1-82) we obtain, after cancelling the factor e®*
(10 pp. 58=77):

02 p=n_ ~p-n-1 1)n x=P=n-2,
nén% %Q_Z!Q(n+p)hhx -l-n:Z_”(n-m) (nw-r ), x

+ Z qu“m E lz.kzc’p"k =0 .

N==00 K==w &

Putting the coefficient of x™P™R equal to zero we obtain:

. ad
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@ hn-2a>(n+p~1)hn l+(n+p-2)(n+p-1)hn 2+:Z Qg = © (1=91)

for n=0,1,2,:::. (for n==1,=2,.:.. it 18 automatically satisfied,
since qim= hamf 'O,’ m§1f2’,iaas)e

For n=0 we get! a‘>2*q =0 or w2+1 0. That is wy= i, c’b2=si.
For n=l and since m2+1 o, we obtain:

~2wp+q = 0 or p = ¢/ , 1l.e. py= =1¢/2 , p,= ie/2 .
From (1=91), replacing n by n+l and using 02+l = 0, p = c/2¢n. we
also obtain the following recurrence formula for the hn

1 )
2enh = (n+c/2m)(n+c/2m-l)h 1+ %iathn+l g ? Pli2ieees o (1=92)

Taking hoz 1l we can find:

(c/2m) (q/zm-rl) -V(V+l) ~-cb

} 2w

and 80 on. We then obtain two particular normal solutions around
X=00 ¢

[E2 goxy sz ] > mex(lal o) L (1-93)

RB(X) n . X+b

2
where Ry (x) is given for W= 1, py= -ic/2 and R,(x) for o= -1,

p2- 1c/2. The serles appearing in the above formal representa.tions,

are normal asymptotic series in the precise sense of Poincare 8
definition (9 pp. 168=1T4 444=445, 10 pp. 69=T2), in the region
Ix|> max( |a] , |b] ). Expanding according to the binomial:

= (14 § )1/2(1+ h)'l/a -

I
L
-
+
<
[3*)
"4
+
L]
-~
Py
I
o
~N
n
>
+
.

H
i

1+c/2x+eese , |x|)max(|a],Ibl)

we obtain the alternative expressions:



l)= 1)=ch _
(x)rx:e“xx Pl1+ (5{20)(c{gm+ ) V(Yt“ifg“ - +oooJ[14e/2x40000 )=
4 2
= e“xxﬁpf1+(- + i:/?@)(c/amfl)-v(v+1)-cb) % + §§ *
20 X

+_§§"’Fbaiosj ’ (1"94)
b'e

" which will serve for comparison later. Another useful remark 18
the following: in the real case (i.e. a;b real) we have 912\322
= =i¢/2, where the bar signifies the complex conjugate, while
always ;= °2‘ i. Then, according to (1-85)-(1-89), all qn‘s are
real and the recurrence formuia (1692) yieiaa as coefficlents hf1

The same is obviously true for the coefricients gn in (1-94)
This means:

R, (x) = éffi) , a,b real , (1-95)
Ry 4

or for real x:

RB(X) = ﬁ;?i) . (1-96)

The eritical line, or Stokes line, is given by (10 p. 72)t
Re(ox) = 0. If X=X +1x,, with ® = +1 we have!

Re[+i(x +1x )] = =0 or x,=0.

80, the real x=-axls 1s the critical or Stokes line. Any solution
R(x) of equation (I 1-50) can be expressed asymptotically as a
linear combination of the above formal solutions 33, R‘, i.e.

R(x) /22 A Ry(x)+h, Ry(x) (1-97)

and this expression holds uniformly in each of the upper and

lower half x~-planes separated by the Stokes line x,= O. The
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coefficients A3 and A4 may, of course, change values from one
plane to another for the same solution R(x) (10 p. 73). A similar
combination expresses R(x) along the real axis.

The main problem of this researéh 1s to find explicitly
expressions like (1=97) for the particular solutions Ri(x), 2(x)
defined in the preceding sec¢tion, in both halves of the x=plane
and along the reéal axis. This is the subject of Chapter 2. One
last remark concerning the evaluation of R ,(x) and Ra(x) For
complex a; b; x 1t was observed; that the asymptotic geries for
R4(x) could be used earlier, for smaller |x|, than the asymptotiec
series for Ry(x). The order v did not affect much the value [x|,
after which the asymptotic series could be used.



Fig. 1-1  Comformal mapping of x-plane on to
t -plane according to(1-13) -
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CHAPTER 2

ASYMPTOTIC EXPANSIONS OF Rl(z); RQ(Z) FOR LARGE |zl

INTRODUCT ION

We are going to employ the method of W. B. Ford as developed
and applied in Chapter VIII of his book, reference 7. Starting
with R;(z), R,(z) as defined solely by:

Ry (2)=2 "*1[1+Zla 21 , Jzi¢min(|al, b ) (1-10)
A=

‘Ré(z)zz‘v +ZZ bnzn] lz\¢min( lal , |b) ) , 2v+lfinteger  (1<11)
n=1l '

a,f, (n+a)+a lfl(n+a 1)+a (n+c-2)+ a3t 3( +0=3)+

‘2 2

va, _,f,(n+0=4) =03 a_=0, m=1,23,.... (1=8)

around z=0, that is without reference to the fact that they are

golutions of:

v(v+1)

g “%?*A]R(z) ’ (I 1-50)

z+b

R(2) ¢ ——S— R/(2)4[1+ ==
(z+a) (2+b)

we are going to obtain thelr asymptotic expansions. More precl-
sely, in a manner independent of the previous results, we will
arrive for Rl(z>, and when 2v+l 1s not an integer, for Ra(z) to
expressions like:

R(z) ~v Ay R3(z) + A, R,(2) (1-97)

Z=>0 ’

and at the same time determine explicitly the values of the
constants 43’ A,. The procedure will also yield the same functions
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Rs(z) and Ra(z) in exact agreement witht

R:}(Z)N@mzzip[l*(% . (c/gml:{ml')-\l(v-hl)-c )

+

2]
M >

. 2 = 3le
z 4 h

In a subsequent section Ford's method will be extended and

applied to yleld the required results when 2v#l is an integer.
Ford does not treat thils case in his book but refers to it as a
subject for further research. Since odd integral values of v
appear in the solution Rh(z) used in region (2), figure (1=2),
PART I; outside the antenna, we must find an expression like
(1-97) for the logarithmic solution R (z). Then we will be able
to obtain the linear combination Rh(z)'A41R1(z)+A4 1(2),
permitting the evaluation of R,(z) for small |z].

We are going to make use of two fundamental theorems proved
in Chapters I and VI of Ford's book and refer to them as Theorems
I and VI, respectively. They are as follows:

Theorem I: " If the coefficient g(n) of the power series

o0
£(z) = Z g 2" , radlus of convergence >0,

may be considered as a function g(w) of the complex variable w =
= X+1y and as such satisflies the two followlng conditions when
consldered throughout any arbitrary right half plane x) Xyt

(a) 18 single-valued and analytic

(b) 1s such that for all |y| sufficiently large one may write

|g(x+1y) < Ke €1, where € 1s an arbitrary small positive quanti-
ty given 1in advance and where K depends only upon x, and €, then
the function f(z) defined as above, 1s analytic throughout any
sector 8 (vertex at origin) of the z-plane which does not include
the positive half of the real axis and f(z) within 8 1s develo-
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pable asymptoticaly as follows!
2 g(-n)
P(B)AN = Z e

n=l 2P

The theorem 1s supplemented by somé remarks and generallza-
tions; we shall make use of the following:

(1) The theorem 1s valid if g(w), besides satisfying condition

(a), is such that we may write, when x>x, and jw] is large,

le(w KW C, where K and ¢ are constants of which the latter
may be positive, negative; or zero.
(11) If £(z) is defined by a power series of the type
£(z) = IE g(n) (2/u)?,

n=o
where u:aeiw is a eonstant, then the theorem continues as before,
provided conditions (a) and (b) are satisfied, excéept that the
excluded ray instead of argz = O is now argz = V.

Theorem VIt " Let f(2z) be a function of the complex variable

2z defined by the séries:

2  p(n)zP
£(z) = ,
F(z) 5;? r-(n+p)

may be regarded as a runction h(w) or the complex variable w=
= x+1y and as such satisfies the two following conditions:
h(w)

(a)

Fk - 18 a single-valued, analytic function of w throughout
W+p

the finite w=plane,

(b) h(w) 1is such that, when considered for values of w of large
modulus lying in the right half plane R(w)=x)x_, where x, is
some assignable number, it may be expressed in the form:

h(w)=c_+ -%— ——B e 4 cg*td(w,8)
O WP ' (wep) (wep+l) (w¢p)(w+p+1).._(w+p+s_1)
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in whieh the ¢, are constants and lim " o(w,8) = 0} 8=0,1,2,...
wl-> o0 ,
Then, for values of z of large modulus, the function f£(2z) has the
following asymptotic expansions?

) h(-n) ) -
Hal e Z e 5 m/2{aresl3n/2,
n=1 rYP-n)z

n=o z
in which latter development it is understood that, if z = pelf,
we take:

AP = [ (Lep) (Anestd)] o g yeq

ry larse négative number, the runction r(z) is developable
asymptotically when argz = + /2 in the form of the sum of the
series in the above two expressions under the same interpretation

‘t‘Qr zl-po "

The following remark can be added: For -m/2{argz{n/2 an
equivalent asymptotic expansion is:
©  h(-n) ] o ¢
2l - 3 e se®at P 7 B n/2largzdn/2 .
7=l [(p-n)2® =0 P ,
The added series asymptotically contributes nothing to the
expansion. In fact, by factoring out e® we haves

) o a¥f o 23 h(An’)W” 12
o R o i E

Now for -n/2<{argz{n/2 e~% has the following asymptotic

OXPanlionS O-zN O+ % + % +ss0s « Then the same is true for

Fiine i mﬁmhﬁ%}ﬁww;cami

e RS, e b st SR 005
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-4 4 nz;_l F(p:‘r;;—zn ~ O% % #* % $eo0i0 -‘n‘/2 <arsz <ﬂ-/2 .

Therefore, the two expansions are asymptotically the same.

SOLUTION OF THE ASSOCIATED DIFFERENCE EQUATION

What essentlally defines R,(z) and R,(z), as given by (1=10),
(1-11), is the recurrence formula (1«8), together with (1-1)=(1=5),
¢e the index n by the continuous variable x and a, by the general
function u(x). That 18, for x = n, n being an integer, we have!

u(n) = a, - (2-1)
Then, the recurrence formula (1-8) transforms into the difference
equation:

2. fp(xeo-m)u(x-m) =0 .

n=0
Advancing x to x+4, i.e. writing x+4 for x, we get:

4
2 fp(xsosb-plu(x+dem) = 0 . | (2-2)

m=o0
We next substitute:?

X40 = ¥ (2-3)

u(x) = v(x+o) = v(y) (2-4)

m

and the equation becomes:
P4 (T)V(y+4)+p5 (7) V(743 )40, (y) v (y+2)4py (y) v(y+1)+
*p(y)v(y) =0, (2-5)

vhere, with the use of (1-1)=(1-5), we have!

L i B



el (y+4) (7+5) -2(g+4) =v(v41)] (2-6)
By (F)=t) (x+0+3)=ty (y43)=(asd) (743) (y42) +c(y+3) =(asd) v(vel)=

-(a+b)(y+3)(y+b) (a+3b) (y+3) =(a+b) v(v+l) (2-7)

pa(y)-r (xe042)=t, (y+2) (y+2)(y+l)+a 2ov(vel)e
=(y+2) (743) =2(y+2) #a2=v(v41) (2-8)

Pl(Y)Ef3(x*é*l)ﬁfz(yil)ﬁag (2=9)

Po(¥)=t,(x+0)=f, (y)=1 (2=10)

The 1ast expressions for the p(y)'s have been written down
a8 the sultable forms for the solution of equation (2-«5) by the
method of Laplace's transformation (7 Chapt. VIII, 17 Chapt.

XV pp. 478=501, 18 Chapt. III pp. 57-88).

In order to be able to apply Theorems I and VI we must find
that particular analytic solution ¥(y) of (2-5), which satlisfies
condition (2-1), or, in terms of y and V(y), the conditions:

F(n+v+l)=a  for all integers n and for R,(2z) (2-11)
#(n-v)=bn for all integers n, 2v+l not an integer,
and for R, (z) (2-12)

Equation (2=5) 1s a linear difference equation of the fourth
order with polynomial coeffic 1/_,,t§ It possesses four independent
solutions. For the general theory of these equations and espe=
cially for certain of its results, of which conti us use will

be made in this analysis, we refer to Chapters I, I;I of refe-
rence 18, Chapters XII and XV of reference 17 and Chapter VIII of



reference 7.
The method of Laplace's tranaformation is applied by assuming
a 80lution in the form:

v(y) = ghr j’ty'l ¥(t) at , (2-13)

where £ 18 a line of integration in the complex t=plane, sultably
determined later and V¥(t) is found from a certain differential

t= [tV (e) ]p=

- j;ty*QW'(t)at (2-14)

i

(y+8) (y+a+l) J'ty+s IWdt

(y+e+1) [t7*2¥(t) ], -
[ty+s+1W'(t)] . JétY+s+1W"(t)dt ) (2-15)

the last expresslons ror the p(y) 8 ln (296)~(2e10). we easily
obtain:

Jy MR, 0¥ (0 19 (00 (2144, (I¥(0) atsl 20V, 0]y = O ,

where:
§,(t)=abt?s (asd) 74122 abt2(t41/a) (t+1/0) (2-16)
fl(t)%engtaé(a¢3b)t3s2t2; =2t2[abt2+(a+b) t+1]+ct’ (2-17)

fo(t)=eabV(V*1)tas(g+b)V(v¢1)tB#[ageV(v+l)3t2*255+1 =
= -v(v+l)abt?(t41/a) (t41/0) +a2(t41/a) 2 . (2-18)

It can now be seen how the last expressions for the ply)'s
in (2-6)=(2-10) are sultable for the formation of the ¢(t)’'s.



We also have for I(V,t) (17 pp. 478-501;, 18 pp. 57=88):
I(¥,t) = ¥(e)[tT¢ ()4 %‘(ty*%g(t)]'aw"(t)'cy’*%?(t) =
= ¥(6) VT gy (0)+(yel)p(£)+tgh(8) Jv/ (1) * g (1) . (2:19)

Since ¢1(t)+t¢é(t) = =2abt2(t¢1/a)(t*l/b)*et3+Aabt4+3(a+b)t3+2t22

= 200t7(t41/6) , we also have:

I(¥,t) = abty*é(tﬂ/b)‘{ﬂr(t)f(y*i)(t+1/a)+2t]—w'(t)t< t+1/a)} (2-20)

We conclude that (2=13) provides a solution of (2-5) if ¥(t) 1is a
solution of the differential equation:

abt® (441/2) (441/6)¥ /(1) =th; (L)' ()49, (L)¥(L) = 0 (2-21)

and the path of integration [ is chosen so that I(V¥,t) has the
same value at both extremities of the path when it is open, or so
that I(¥,t) returns to the same value if { 1is closed and t
returns to the same polnt after describing 1it.

We now look for the behaviour of the solutions of (2=21) at
the vicinity of 1its singularities The equation has three regular
singularities at t,= =-1/a, t.=-1/b, t=c0 and an irregular at t=0.
For 1ts solutions around t-o we put:?

% = em/t' -;, Il B)sntn+p-1 - mem/tz sntn".ﬁ 2

n
Y _ m/t2 B2 4 , +-3
§:g S (nep) (nep-l)g, O -2me®/t 3 3 (n+8) g, t**P"3 +

2 m/t n+p=4 m/t'S n+p-3
+ n%e t + 2me t
ﬁ§% &n é;g én
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Substituting in (2-21) and after the factor em/tta is cancelled
wé obtain:
Labt2e(asb) te1 ]l T (n+a)(n+a-1)gntn*2~2mz (n+g)e, 141,25 8, t%

n=so n=o n=o

+2m2 gntn+1]+[2abt2+(a+3b)t+2][Z (n+B)gntn 2, mZ &, tn*l]-o-
n=o

‘Ili

|

+[~abv(v+l)t -(a+b)v(v+1)t3+(a v(v+1))t2+2at+1]25 gn 0.

n=o

Equating the coefficients of t%, n=0,1,2,3,.... to zero we have!
¥AY j‘o » & My = 0O . AP '2 m.= =y .,

For tﬂ ! gtm°g,= 0, or m #1 =0, or my= i, m, 1.

For tl ¢ =2mpg . +ngl+(a¢b)m +2mg =2Mg . +2ago+g1— 0, or 2mpf=ec,
g =c¢/2m , 1.6 Bls =1e/2, 92— ic/2. 80, we obtain two normal
solutions around t=0: '

WI(t)PU ei/ttiic/g(1+glt+g2tg#.aaa.) (2=22)

The series in parentheses are asymptotic¢ as t->0 (9 pp. 168-174
444-445, 10 pp. 69-72). The theory also assures that ¥,, ¥, are
twice differentiable and that the asymptotic expansions for

WI’ W I (even for Wg, W ) can be obtained by formal differentila=~
tion of (2-22) and (2-23), respectively (10 pp- 58—77) Now

that ir t—»o along the real axis we are goins to have.

I(v ,t)' =I(V..,t) = 0 as long as Rey) -1+ |Image|/2 .
1 t=0 I t=0 - ’ -

Since any solution of (2-21) 1s a linear combination of ¥; and
¥11; We have:

If Rey) =l+|Imagel|/2 , I[¥(t),t] '_,, =0 (2-24)
, (t=0
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the real t-axis. This statement will serve to fix the path ¢ in
(2-13) 8o that to provide a solution of the difference equation
(2-5).

The indiclal equation around t,=-1/a is!
¢1( t)
abt’ (t+1/b)

B(p=1)=[ = 0 with roots £=0 and By= 2.

té, (t)

t--l/a

Around t,==1/bt B(p=1)- [ 1(“1/ )]t=_1/b B =0, rootst p=0 and
&

B.= 0.
: Since tlsal/a and t2=il/blé?é regular singular points of
(2~21) there exist one soélution W (t) of this equation around
ty==1/a and another V, .(t) around t —-l/b, which, in the neighbor-
hood of the corresponding point and up to the nearest singularity,
can be expressed by the following convergent series:

¥ (t) = (t+1/a)? [1+p1(t*l/a)+p2(t¢1/a)2+aa...] (2=25)
¥a(t) = Legy (t41/b)4a,y(t41/0) 200 cens (2-26)

We observe that ¥y (=1/a) = W '(-1/a) = 0 so that from (2-20):
(¥, (t), tJ,t;al/a‘ 0. Also from (2< 20) and (2-26) we see that!

I[V,(t), ]| . o= O Combining these results with (2-24) we

conclude that there exist two corresponding solutions of (2-5) in
the form:

v(9) = z1 fgl"‘y-l“’ (t) at (2-27)
vo(y) = ghy th, Ty, 1) at (2-28)

where the paths e and e are shown in figure (2-1). The dotted
lines represent the branch lines of V¥,(t) and ¥,(t). The paths

{, ana C can be deformed as long as they do not cross branch
linea and end at t=0 along the real t-axis.
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The 80 defined solutions vy (y) and v, (y) are analytic for
(7 Chapt. VIII, 17 pp. 478=501, 18 Chapt. III)

Rey) =1+ |Imagel /2 . (2=29)

It will be shown later that they are also independent.
In order to obtain the third and fourth independent solutions
of (2=5) we put (7 Chapt. VIII):

v(y) = wiy)/M(y) (2-30)
and substituting in (2<5) we obtain:

Zp (y)w(y+m)/T(y+m) = 0 , or
=0

Pu(y)w(yed)+B5 (y)w(y+3)+P,(y)w(y+2)+P, (y)w(y+1)+
+P, (y)w(y) =0, (2-31)
where with the use of (2-6) to (2-10):
P, ()=, (y)=ab[ (y+4) (y+5) =2(y+4) =v(v+1)] (2-32)
P5(y)=p5(y) (y+3)=(a+d) (y+3) (y+4) (y+5) = (3a+50) (y+3) (y+4)+
+[a+3b=(a+b) v(v+1) 1 (y+3) (2-33)
Pa(y)=p2(y)(y+2)(y+3)=(y+2)(y¢3)(y+4)(y+5)ﬁ6(y+a)(y+3)(y+4)+
+[a246-v(v+1) 1 (y+2) (y+3) (2-34)
Py (y)=pq (¥) (y+1) (y+2) (y+3)=2a(y+1) (y+2) (y+3) (2-35)
Po(y)=p, (y)y (y+1) (y+2) (y+3)=y (y+1) (y+2) (y+3) . (2-36)
Following similar steps as before, we assume a solution in the

form: w(y) = z47 éty’IV(t) dt and form the functions:



£241 (2=37)

"
[

$,(t)
b5 ()
92(t)
$, (1)
$5(t)

(e#b)t366t2+2at (2-38)

[l

i?&bﬁAs(3a¢5b)t3¢iag*6av(v+i)]té (2-39)

=2abt%af a+3b=(asb) v(vel) ]t (2-40)

<abv(vel)t? . (2=41)

Then ¥(t) must satisfy the following differential equation:

(te*l)t4ww(t)a¢3(t)t3Wm(t)¢¢2(t)t2W"(t)s¢1(t)*'(t)#
#9(1)¥(t) =0 (2-42)

while in this case (17 pp. 478-501, 18 Chapt. III):

3 @ . 2 m ..
f =\ ( < L 4+ ¥+ 4 (Y]t () S di y+m+1 (t) [«
I(W,t)-ﬂ!(t)m%é ppr- Ui WO OR (t)m%-o el Pasa(t) e
1 m ., ot
" S D feYtme2, oy e Y3, ¢4 Sl
+¥ (t);;r ==l ¢m*3(t)J~W (t)t $(t) . (2-43)
m=o0 4t
Now, equation (2-42) has three regular singular points at
t=0, t;=1, t,=-1 and an irregular singularity at t=co. The indi-
cial equation around t=0, according to (2-37)=(2-42), is:
p(p-1)(p=2)(p-3) = 0 with roots 0, 1, 2, 3. Four independent
regular solutions of (2-42) correspond to these roots and any
golution of it can be expressed as a linear combination of these

four. These solutions are of the general form:

P
Vo ()=t s[fo(t)#rl(t)lnt¢...,.+fm(t)(1nt)m3, where s=1,2,3,4 and

m&3. £,(t), £,(t), ..eue, £,(t) are analytic at t=0. Then ¥, (1)
vanishes at t=0, provided that Re(y+p_)> O, or Rey) 0,-1,-2,-3.
8o, 1f Rey» 0, t'¥_(t) vanishes at t=0 for all ¥ (t). This fact,
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combined with (2-43) means that:

If Rey>O0 ¢ I(¥,t)] t=0= (2=44)
for any solution ¥(t) of (2=43). The result is that for paths {
starting and ending at t=0, we will have [I(¥,t)],= 0 for any
solution ¥(t) of (2-43), provided that Rey) 0.

The indicelal equation around t3=1 is:

B(p=1) (B=2) (B=3) -([ 745 (£) 1/Lt*(ta1) Zl]tgifB(Bil) (B=2) = 0
with roots 0, 1, 2 and 932 =1¢/2. Around t,= =i

B(p-1) (=2) (B=3)= [ 34500 1/Lt4(2-1) ] __, (B2} (B-2) = O
with roots 0, 1, é and B,=ic/2. |

As before, there exist two solutioens W (t) and WA(t) of
equation (2=42), the first around t=1i, the second around t==i,

which can be expressed by the following convergent series:
w3(t>:(tsi)*i¢/2E1+h1(te1)+h2(ts;1)2:+:...J » [t=11< 1 (2-45)

V0001172 e (1) ar, (1)), [te2]< 1 . (2-46)

Then, combining with (2=30); we find two other independent
solutions of (2-5) in the form:

vz (y) = - — ty'1W (t) at (2-47)
3 mf‘(y) 23

v, (y) = L[ - v, () at , (2-48)
4 mﬂﬁy)la 4

where {B and {, are shown in figure (2-2) (7 Chapt. VIII). They

start and end at t=0, as condition (2-44) requires, enclosing 1
and =1 counterclockwise. The t-plane is properly cut by the
branch lines of W (t) and L (t), correspondingly, shown by dotted
lines in figure (2-2) The ao defined solutions v3(y) and va(y)
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of (2<5) are analytic for

Rey >0 . (2=49)

We have found four independent solutions of the fourth=-order
linear difference equation (2-5)! v,(y) and vg(?)‘défiﬁéd and
analytic for Rey ) =1+ |Image|/2 and given by (2=27) and (2=28);
vz(y) and v,(y) defined and analytic for Rey> O and given by

(2-47), (2-48). For Rey< =1+ |Image|/2 and Rey< O we define the
analytic continuation of vi(y), vé(v) and v3(y)i va(y), respectis=
vely, with the use of the difference equation (2-<5) itself. That
is:

ve(¥) = =[p,(7)v (y+4)+p5(y) v  (y43)+p, () v, (y+2)+
+2av (y+1)] 3 8=1,2,3,4 . (2-50)

We see that the so defined four solutions of (2-5) are analytic
in the whole y=plane.

We are now going to obtain expansions of these functions in
terms of inverse factorlal series and investigate their behaviour
as y=»o in the right half y-plane, heretofore indicated as:

s viadl We first observe that vi(y), vg(y). w;(y)svz(Y)r(y),

and wa(y)%va(y)r(y) can be expressed in the general form:
ug(y) = 57 L»ty’l(t-ts) St (t) at (2-51)
S 2l Ji, 8 g

where f (t) 1s analytic at t=t_ but not at t=0; the so defined
functions of y are analytic for Rey)y,, (where y_=-1+|Inagc|/2
for s=1,2 and O for 8=3,4). Looking at equations (2-21) and (2-42)
we see that t=0 1s a regular singular point for f,(t) and f,(t)
appearing in the definition (2-51) for ws(y) and w,(y), but an
irregular singularity of f,(t) and f,(t) assoclated with v,(y)

and vo(y). (Equation (2-42) has also an irregular singular point

at t=o0, but all the paths Cs in (2-51) begin and end at t=0

) ‘t"w
e |
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without approaching the vieinity of t=oc0; actually, this is why
(2-51) defines u,(y) only in the right half plane Rey > ¥,). The
appearance of irregular singularities in (2-21) and (2-42) 1s due
originelly to the fact that equation (I 1-50) for R,(2z) and Ré(z),
and consequently the functions themselves, have an irregular
singularity at z=eo (7 Chapt. VIII); this, in turn, leads to a
non=normal form for the associated difference equation (2-5) (7
_Chapt. VIII, 17 pp. 478-<501, 18 Chapt. 111). .

When t=0 is a regular singular point of f (t), it is a
familiar fact of the theory of difference equatlons that, if a
sufficiently large positive number w 1s selected, then ug(y), as
defined by (2=51) for Rey > yqs except for a constant factor
depending only on ®, t,, B, can be expressed in the following
form:

¥ 7 /a 8,
u(y) = s F L) “Q:y; s (2=52)
(y/b+ﬂ +1)

where:
Q(Y) = l+é§i (y+mB +m)(y+m6 +2m)....(y+m5 +nm) (2-93)

is an inverse factorial series convergent for Rey) y, (7 Chapt.
VIII, 17 pp. 485=487, 18 pp. 61-64). We can apply these expansions
immediately to w3(y) and W, (y), since t=0 1s simply a regular
singularity for fy (t) and f (t). Looking at figure (2-2) we see
that e and @4 can be deformed into the circles [t-1]=1 and
lt+i|—1, respectively, referring to references 17 (pp. 485-487)
= lg v3(y) end va(y) are derined by (2945) to (2‘48)! Compering
with (2=51) to (2-53) and with =1 we obtain, except for a
constant factor, the following expansions:

~ (3) :
v3(y) = ()Y Q(i)/f’ (y+1-1¢/2) ; Rey)» 0 ; 1=e17/2 (2-54)
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vy (y) = (=1)7 Q( )/r(y*l*ic/a) ; Rey)0 ; =12e712  (5.55)
 (3) 5{3) g) i e s
(Q,oy = 14 = 4 o ——— - #s000 5 ROy D O (2=56
Q(‘Y ) * y+l-1c/2 * (y+1-1c/2)(y+2-1c/2) ' 70 (2-36)

y (4) (&)

4

) = 1+ “isl*‘“ ' s gg“"f"”"“”"” +eos , REYD 0 o (2=57)

@)
~—~
4
g
(

I 1 -
y+1sie/2 (y+1+1c/2) (y+2+1¢/2)

(3) Q(#) o o
The inverse factorial series Q(y)’ L yy4 (y) converge uniformly for
Rey) 0. Their coefficlents gé3), géA) can be obtained by the
method explained in references 17 (Chapt. XV), 18 (Chapt. III),
or by direct substitution into the difference equation (2=5) and
application of the method of undetermined coefficients. We will
find them explicitly later using the former method. For the ge=
neral theory of inverse factorial serlies and thelr properties we
refer to references 17 (Chapt. X), 19 (Chapt. VI pp. 170-177).

The constant factor for vg(y); va(y) was selected so as to
give them the form indicated in (2-54) to (2-57), which will
prove of convenience later. Hereafter we adopt these definitions
for v3(y) and v,(y), instead of the integral forms (2-47),(2-48).
They are simply constant multiples of the latter. As before,

v5(y) and v,(y) are analytic for Rey) O, the same being true for
(3) (4) ]
(2(y, and (y) . Their analytic continuation for Rey {0 is again
provided by (2=50) and makes the so defined functions Vs (y) and
vh(y) analytic throughout the y-plane.

When t=0 is an irregular singular point of f_(t) in (2-51),
convergent expansions of the form (2-52) and (2-53) can not, in
general, be obtained. However, with w=l (2-52) and (2-53) provide
an asymptotic expansion for u (y), as defined in (2-51), as y-»0
in the sector -m/2+€ {argy <ﬂ/2+= (e>0 and arbitrarily small)

(7 pp. 309-318, 8 pp. TO=T4, 1T pp. 457=-459, 20). This statement
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is based upon a theorem contained in reference 8 (pp. TO=T4).
18 due originally to Norlund and its proof can be found in
Norlund's original paper in "Acta Mathematlca", reference 20. We
give the theorem in full, as c¢ontained in reference 8 by Ford,
booauoe it serves to oiofify‘many points fégaroing the solutions

have been making useé of.

Noriuﬁd's;Theofemi "Given the linear difference equation

ZP (x)u(x=1) = ; (1)
where the coefficlients are factorial series of the form:
. (i)l (1) (1)
?1(x)2cgi) a "““"2;* e — Feeee (11)
' : x+1 (x+1)(x+2) (x+l)(x+2)(x+3)
1 =20;1,2,00504,k

ali of which oonvefgé throughout the right half of tho x-pianéa

ristic equation

(°’,k o(1) k-1

eq cg +......*céz): o céO)é o, cék)# 0 (111)

are distinct. Thén there exist k solutions Upy Ugseseoey Uy Of
( I) such that throughout the sector -m/2+€ {argx {n/2=€ (€

X F(X+1)

uyr ey F?;::ETTT (X) ) {IV)

where pJ is a constant and ¢ (x) a factorial series of the form
indicated in (II). In case (III) has multiple roots and ay is an
n=fold root, two cases are distinguished:

(1) a, 1s at the same time an (n-p)-fold root of the equations

2; (8) k'B =03 P=1,2ys000y n=1.,
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(2) These conditions are not fullfiled.
In (2) no asymptotié development exists of the form (IV). In (1)
there éxist n linearly independent solutions ué(x) (8=1,2,64604,0)
such that when =m/2+e  argx { 7/2=€ we have:

the expressions ¢, , ¢9s+::+, ¢, being developments of the form
(I1).

If some of the roots of (III) are zero or infinite, it is
nec¢essary, in order to obtain a system of fundamental solutions,
to use a serles of substitutions of the form:

s = M ™S 1wy

and determine Ky so that the difference equation in WELL;. shall
1s finite and different from 0. It is always poesible to determxine
in but one way, a series of numbers “1’ “2”"“' p.m such that
the total number of roots which are finite and different from
zero in the corresponding characteristic equatlons thus obtalned,
is exactly the order k of (I). If, whenever a multiple root occurs
in one of these characterlistic equations, the corresponding
conditions under (1) are satisfied, then there exist a system of
fundamental solutions of (I), each of which 1s asymptotically
represented within the sector -m/2+¢ {argx{ m/2-€ by a series of

p :
the form: Fki) af Qs(x) « If no multiple roots occur in one of

these characteristic equations, the solutlons have the simpler
form:
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Wy o [(x+1)
C(x) &) ey ENCE

Exceptions oceur when some of the numbers,u? are not integers.
Then ?hé)éoefficients in the above-méntioned difference equations
_ l"';"‘ _ _ _ L . _ - ] _ .
for w(x§ are no longer developable in factorial series of the
form (II). Suppose by is equal t6 a rational fraction p/q. We
put x=pz, w(x)=v(z) and derive from (I) a difference equation for
v(z), thus demonstrating the existence of solutions expressible
asymptotically in the forms:

" . A
I (x/p) aj/b $5(x/p)

Here we are dealing with the difference equation (2<5).
Dividing by p (y) and making appropriate change of variables,
like y+7=Xx, v(y)—u(x), we can reducée it to the forms (I), (II).

We can then easily verify the statement made on page 2-16.
Returning now to (2=51) we observe that f;(t) and £,(t),
appearing in the definitions of vy (y), v,(y) for Rey) =1+ |Image| /2,

have an irregular singularity at t=0. Then, according to the
preceding discussion, (2-52) and (2-53) with =1 provide at least

asymptotic expansions for v,(y) and v,(y) when YFRp e Referring

to figure (2&1) and to the definitions (2625) to (2-28), we obtain,

)
iy @) §2

)=(-1/a)¥ 0 -1/a)Y =Ll 2-58
r@)=t-a/e) Tyss) )7 =i/ y(y+l)(y+2) (2-58)
F(y) L (2)
~ (1)
~~ (2-60)

1 =, =y
() Yrup” ' y+3 (y+3)(y+4)



¢ = o —— diseisess o (2=61)
yiﬁi y+1  (y+1)(y+2)

All these expressions are valid in the sector -m/2+€ { argy {7i/2=¢€,
o (1) (2)

The inverse factorlal series fl(y) f)(y) are at least asympto-

(8),

tic as y;iree in the indicated sector. Their coefficlents gn

#=1,2, can be obtained by both methods mentioned previously for

gé3); géa), the only difference being that the process is now at

least formal. AS we shall see, it will not be necessary to find
thém explicitly. Hereafter we adopt the above definitions for
Vi(y), vé(y)a They are simply constant multiples of the lntegral
forms (2-27),(2-28) of the analytic functions vy(y), v,(y).

The linear independence of thée 80 obtained solutions vl(y),
vg(y), vg(y), v, (¥) can be shown by referring to Norlund's
theorem, or by making use of a general theorem given in reference
17 (p. 360), based upon the behaviour of the solutions v, (y) (s=
=1,2,3,4) as Yirp®® which we now know.

We have obtained for vs(y), v,(y) two convergent and for
ve(y), vo(y) two at least asymptotic expansions in terms of
inverse factorial serles valid in a half plane limited to the
left. It is a fact of the theory of linear difference equations
that when |y| 1s large (without any limitation to the left), the

(s)
corresponding expansions 52(y)’ though not necessarily convergent
any more, are in any case developable asymptotlically ln serles
of the same form (7 pp. 309-318, 17 pp. 457-459). Thus, we have:

1+€1(y)
y(y+1)(y+2)

1+€,
(-1/0)7 -*;1”—’ (2-63)

(=1/2)¥

]

vg(y)




c~(3) 4}

v (y) = (DY /M(ye1=1e/2) 12e17/2 (2-64)
3 (¥)
- 10" e (raretess L o-1n/2 i
V) = (DI 0y /Myalate/2) 5 ~a=e™TE (2265)
where:

y-*u)

(s) - (8) (s)
Quuy A e e s B L, 53,4 (2567)

Y \Ylmw  yélzic/2  (y+lgie/2) (y+2g 10/2)

where the upper sign should be used for s=3, the lower for s=4.

ASYMPTOTIC EXPANSIONS OF Ry(2), R,(2) FOR LARGE |z|

We are now in a position to apply these results and Theorems
I and VI to obtain the asymptotic expansions of Rl(z); R,(2) (for
the latter when 2v+1l is not equal to an integer), soluiions of
the differential equation (I 1-50). As was stated in the preceding
section, we are looking for the particular solution v(y) of (2-5),
which satisfies the conditions

V(n+o) = a, for all integers n (2-68)

and where for Ry (z) we use o=0 1-v+1, while for R (z) (for non-

integral values of 2v+l) c—o2=—v. We have ebtained four indepen-
dent solutions of the fourth order difference equation (2-5). Then:

V(y) = Avy (y)+Bv,y(y)+Cvs () +Dv, (y) (2-69)

where A, B, C, D are constan’:. It 18 now obvious that with o=v+i,

or o=-v (if 2v+l 1s not an integer) and the following four initial
conditions:




F(o+o0) = (o) =1 (2-70)

0 (2=71)

[}

%(il+§)

0 (2-72)

L]

¥(=2+0)

F(<3+0) =0 , (2=73)

¥(y+o) will satisfy the conditions (2=68) for all integral values

of n. The proof is as follows: For n=0,1,2,3,.... and by virtue
of the above relations, v(n+o) will satisfy the same recurrence
formula (1<8), which the coefficients a, satisfy, since for y=n+o
(n=0,1,2,...) the difference eguation (2-5) reduces to the re=
currence formula (1=8); in fact, (2<5) was derived from (1=<8) in
the preceding section. Thus we have: ?(n¢6)2an, 1=0,1,2,3,000,
verifying (2-68) for such n's. On the other hand, for y==4+¢
(2=5) yields:

Py (=4+0) 7(0) #p5 (<3+0) T (=140) +p, (=2+0) T (=240) +2a7 (=3+0) +¥(-4+0) =0.
Using the last three conditions (2-71)=(2-73) we get:
p4 ( "lH'd) +$(-4+g) = 0.

According to (2-6): p,(-4+0)=ab(o=v-1) (o+v). Since o=v+l or o=-v,
we see that in elther case p,(=4+0)=0 and, consequently, ¥(=4+0)=
=0 (G;Ql or oscg)- Using (2-5) and V(-n+9)=0 for n=l,2,3,4 we see
also that ¥(-n+0)=0 for n=5,6,7,... . Therefore, V(n+0)=0=a  for
n==l,=2,=3,=4,=5,..... and (2-68) 1s verified for all integral
values of n,; a8 required. The initial conditions (2=70)=(2=73)
serve at the same time to determine the coefficinrs A, B, C, D
in (2-69).

As a consequence of all these results we can write:

R (2) =273 a,z° = 2 Z ¥(n+g)z", where o=v+l is used for R, (z)

g ¢ e
2 n=o n=o

A1



2=23%
and, when 2v+1l 18 not an integer, g=-v for R, ,(2). Using (2=69)
for V(n+o) we obtain:

Ry (2)= Afﬂz/a)dii;Gl(n)(az/a)n¢B(az/b)5§§“G2(n)(ﬁZ/b)n+
L = =
+6(12)° ZG (n) (1z)P4D(~ 1z)°Z Ga(n)( -12)0 (2=74)

n=o0 3 n=o
vglns s 821,2,3, 44 ty=e] “1/0) tySty

t4--1, i.e. G (n) when considered as functions of‘w-x+1y are
given by:

where G (n) =

Gy (W=v, (wsa) /(-1/a) ¥4 ——a 0D (2-75)
] : (w+e)(w+a+1)(w+a+2)

65 (W)= ,(we0) /(=1 /) ¥+ (2-76)
lim |w|-.w1(w+°) = 1im \W‘a:g(ww) =0 ,

@ (W)=v (weo) /(1) ¥+ ngz_c)/r(vﬁﬂl-ic/ﬂ (2-77)
6, (W) =v, (weo) /(1) ¥*0= Q(W+c)/r(w+c+1+1c/2) (2-78)
Q Ef,i DMk w+of%(j:.c/2 |
(4 ,

(1§"i°%;t% . (&+c+1+1c/i?(w+e+2+1c/2)+°"" (2-80)

the last expressions in (2-75)-(2~78), as well as (2-=79) and
(2-80) being obtained with the use of (2-62)=(2-67). With Re(w+o)
70, or Rew) =0, (2-79) and (2-80) are convergent series. The
functions G (w) are analytlic for all w Just as the functions

v (weo) are. Furthermore, according to (2-75)-(2-80), Gl(W) and
G (w) satisfy all the conditions of Theorem I subject to the
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remarks i), 1i), while G (w) and G, (w) satisfy all the conditions I
of Theorem VI with p3-a+1 =ie¢/2 and p4—a+l+ic/2. Acecording to the
ratio test and with the help of (2=75)=(2-80) we see that the
first series in (2-74) is convergent for |z] € |al, the seecond for
Iz} € |bl , while the last two are eéntire functions. The first two
can be expanded asymptotically for large |z| by applying Theorem
I, the last two by applying Theorem VI. With
z = |‘z‘|:éi'¢ nd & (2-81)
we have using Theorem I, 1), ii):
A(-z/a)° ZG (n) (=2/a)"~v =A(=2/2)° Z Gy (=n)/(-2/a)P=
n=o )
-‘AZGZG (=n) (=1/a) “B*9/2 | for -n $&m, ¢ # arg(-a),
n=l
or using (2-75):
A(=2/2)° ZG (n) (=z/a)* Ay =2" 2 ',n -, =ML P LT,
n=o n=l 2 ¢ # arg(-a) . (2-82)
Similarly with the use of (2-76):
n ¢ Bv;(-n+6)
B(-2/b)° ZG ,(n) (=2/0) v =2 Z e, M P&m
' 1oz ¢ # arg(-b) . (2-83)
For the third term in (2-74) we apply Theorem VI with the
accompanying it remark and with p=o+l-ic/2. Also here j
15012 gang go, with (2-81), -m/2 {arg(12)€ 3n/2. Thus:
Gx(-n |
¢(12)°% 85 (n) (12)" ~) = (12) 'S —;—5 s m/2arg(1z) { 3n/2 or O(P<m ]
n=o > +  n=1 (4z ;
~-(12)°3 —3— +(12)%e 1% (12)~9*1e/2[1, 5 —51‘-—] :

n=1 (1z)® n=1 (12)®



=n/2 arg(1z)€ n/2 or -md$40 .
According to the theorem in the second expansion we must take!
(iz‘)‘a@*ié/é’ﬁé(-wd'iﬁlé/?) (in ;|'z1|:-‘os‘-:L‘lf)j where «m{ V=arg(iz)g m .

Since in this case -ﬂ<¢éo, we must take \l!—¢+11/2, because only

Then we ‘ebtain.

(1 )-O'+10/2k~-0'+10/2 11'\'(-64'10/2)/2_ -a+1c/216cre-ﬂc/4 . (2‘84)

Using (2-77) and (2-84) we finally obtain:

c(12)° ze-(nmz)n , 0L
n=o0
P ) - ~(3)
—— +Ce '"°/4 1z 1°/2[1+Z —-n—-( ], =n<¢£0(2-85)
n=l (iz

For the last term we have: -i=e” 1"/2 -r{$&m, «3n/2Larg(-12)&
& n1/2, p=o+l+ic/2. Then:

(=n)
D(-12)% 3 6, (n) (-12)%-(-12)° 3, As | 30/2 L arg(-12)< -n/2
n=o n=1 —1;)“ or eﬂ<¢(0
N-(-iz)az A(nn "’('J-Z)GD g( 12)-0-1c/2[1+z gB_"‘ ] ’
n=l (=iz)" n=1 (-12)°

-n/2€arg(=12){ /2 or 04£¢4<m .

In this case! (eiz)’q’ig/gs e(=0=1c/2) (1nlz|+1¥) o org

-m { ¥=arg(-1z)€ n. With 04 ¢ {7 we must take V¥=¢-w/2, resulting
in -n/2&V £1/2, in agreement with =n< ¥<m. Thus!

(- u)-a-ic/a; -c-ic/2 (-a—ic/e)(-m/z)_ z-c-ic/z( 1)=% -nc/4
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This result and (2-78) finally yield:

0 Dv, (=n+0)
D(-12)° 3 @, (n) (-12)" ~v -z"z—‘*—f—- .
n=o Z
[hg=dz =1e/2ry, 5(4)
=fre - Z (] 1 s o L
[ +nZ=1 (‘1z)n] £9én
o DV &
‘-GZ —_"4(:15*?? y =40 . (2-86)
n=l z

Combining (2-82),(2<83),(2=85) and (2-86), substituting in (2=74)
and making use of (2<69) we obtain:
-_(in... ) 56 (4)

Ry ()W a®F S ape /At A0, S By 0
2 n=l z n=l (91Z
-2°§ \7(:an) +0e-Te/blz ic/2[1+§ ~;r(13.), , =1 $<0
A=l P S or
0 ¥(=n+o) a4 s/ o0 . (3)
-ZGZ ——— 40 -ﬂc/lH"iz Zic/zﬁl*f “’gn'i]ﬁ-
n=1 " W) Toaml (1)
pe-Te/4=12,710/211, S IRy | 4o0 ; ¢farg(-a,-b) (2-87)

n=l1 (=1z)"

The ray ¢=m is a branch line for R, (z), R, ,(2) and is exelu-
ded from the above expansions. For large P4 we can draw the
branch lines, starting from z=-a and z=<b, along ¢=w. Also
according to (2-68): ¥(-n+o) = a_ = 0, n=1,2,3,..., 80 that we
finally obtain:

%0 55’14)
R (Z)N De" ﬂ'c/ll» VJ.z _-10/2 [1+z _:___ﬁj , 0<¢<ﬂ
: =l (-12)" |
| (3)

A ge~Te/4 iz ,ic/2 [1*2
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For Rl(z) we use o=v+l, for Ré(z) (whén 2v+1 is not an integer),

G==v,

In order to complete the problem we are golng next to determi=
ne explicitly the coefficlents géz), géa) and 1dentify the above
expansions with the previously determined asymptotic solutions
RB(Z), RA(Z)c Anticipating the forthcoming proof, we can state
that, in an entirely independent manner, we have arrived at the
required expansion (1-97) for R,(z), RQ(Z), in complete agreement
with the results of the preceding chapter and, at the same time,
have obtained explicit relations for the preecise evaluation of
the coefficlients of the linear relations.

For gés), gé4) we use the method explained in references
17 (Chapt. XV) and 18 (Chapt. III), mentioned on page 2=16. We
first determine the coefficients h, of the solutlion W3(t) around
t=1 of equation (2-42). V5(t) 1s given by (2-45). We put t-i=z,
t=z+1 and substitute in (2-37)-(2-42):

4 . 42
2(z+20) &b [ (a+0) (241)2-6(2+1) 42815 +[ab(2+1)7 - (3a+5D) (z41)+
dz dz

_ 2, ;
+2246-v (v+1) ]9—% =[ =2ab(2z+1)+a+3b=(a+b) v(v+l) ]gj—z'- -
az~ o

-abv(v+l)¥(z) =0 . (2-89)

Assume V;(z) = Z 2"*® ana substitute in (2-89). After multi-
3 b

n=o0 - z_
P

plying it by we obtain:

E (n+p) (n+p=1) (n+p=2) (n*ﬂs'})%.zn(z*zl) - E (n+g) (n+p-1) (n+-2)h*

n=o n=0



2=28
e 5 . . 5 & e =
‘2n{ka+b)za*éti(a*b)=3]z*eiéi§4iZZ (n+8) (n+p=1) b, 2"{ aba> (38450~
. neo .
iziab)22+[aé¢6=v(V¢1)si(3@+Sb)]2§+.E%(n»B)hhzn{zabzz+E(a*b)v(v+1)a
J n=o -
-aa%@iab]za}- E‘hh‘zﬁabv(v-hl) 25= 3 znhnf(zm-us) =0,

n=o n=o
where:!

£(2,n48) = (0+8) (neBel) (neh=2) (n+B=3) (2621) = (n+h) (nepel) (nepe=2) +
;%aﬁb)22*2£1(2¥b)‘3]2*056i§+(ﬁ*8)(ﬁ*B‘i){abZB‘(38*55‘2185)22*
+[ac+6=v(v+1)=1(3a+5b) ]'<zj+ (n+8) {2;ab 224[ (a+b) v(v+1)=a-3b+2tad] 22} -
=abv (v+1) 2= fo(n+8)*f1(n+ﬁ)z+f2(ﬁ*B)z2+r3(n+8)z3 )
where:
£, (x)=x(x=1) (x=2) [21(x=3) =c461] (2-90)
fi(x)=x(x-1)ifx-2)(X-3)+2[3-1(a#b)](X-Q)*&G*G'V(V*l)‘
-1(3a+50){ (2-91)
£, (x)=x[-(a+b) (x-1) (x-2) =(3a+5b~21ab) (x~1)+(a+b) v(v+1)~
-2-3b+21ab ] (2=92)
f3(x);ab[x(xsl)¢EXeV(V+l)]=ab(x—v)(x+v+1) . (2-93)
Recurrence relation:

3
S folntpem)ny, =0 3 B=1 35 b 4= 0, J=1,250000 & (2-94)
mzo — we=s = J

Indicial equation: fo(a);a(ggl)(a_g)[g;(p,3).g+6;] = 0, with
roots B = 0,1,2 and ;= ~ic/2. Thus, as in (2-45), we have:

¥5(t) = (t-1)710/2 q(41) (2-95)
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q(t=1) —1+Z hh(t-i)n s lt=i<1 . (2=96)

n=1
We can also write (2=94) in the following form:
m:F (Al =0 5 he=1 3 h,y=0,J=12.00., (2-97)
where:
 F,(n)=r (n=1c/2)=21n(n=1¢/2) (n=1=1¢/2) (n=2=1c/2) (2=98)
F, (n)=f, (n=1c/2=1)=(n-1-1¢/2) (n-2-1¢/2)[ (n=1=1c¢/2) (n= %( Sa+3b))+
+c(asi)=v(v+l)] (2+99)
F,(n)=rf,(n=10/2-2)==(n=2-1¢/2) [ (a+b) (n-1c/2-2) 242b(1-18) *
s (n=2=1c/2) =(a+db) v(v+l) ] (2-100)
F3(n)=fy(n-1c/2-3)=ab(n«3-v-1c/2) (n-24v-1c/2) . (2-101)
From (2-47),(2<95),(2=96) we obtain:

wy(y) = 57 "g 73 (422)71¢/2 g(e1) at

where q(t-1) has a regular singularity at t=0. Putting t=1z we get!
v ()= gipf ¥t 171e/2(, ) ~10/20[ 4 (51)° | .
vy(y)= 5ot L% 1 (z-1) a[1(z-1)] az , Rey >0, (2-102)

where L3, the mapping of the path ( in figure (2-2), is shown in
figure (2<3). The dotted lines are the branch lines of q[i(z-1)].
We put:

4-1c/2 ne/4 oo
2,,: al1(z-1)]= -2—,,1—[1+2hni“(z-1)“] zd (1-2)% ,  (2~103)

n=o
where:

ne/4

-—n 8
4, = h=75—(-

(2-104)
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Then, according to references 17 (Chapt. XV) and 18 (Chapt. III),

- after substitution in (2=102) and term by term integration, we
obtain for Rey> O
—a=i(=1c/2),¥ 2ni(=ic/2) .r(_y"_,(f!t?,}_°/2’
vy (y)=e 19[1<e ]ZE d,
n=6 r(y+n+1 1¢/2)

syt = 1s4nnZe ‘HQ{— )Pn,
F(y+1-10/2) 2
|"(n+1 1c/2)r(y+l 1c/2)
F(y+n+l-1c/2)(1=1¢/2)

The expression in brackets is a constant coefficient. Referring
to (2=54),(2-56) we notiece that as vz(y)zws(y)/ny) we choseé!

s~ (3) A

;?) 0 ,
o e 4,002 T (=1)PR
* (y+1-ic/2) (Y"'2 10/2) n%o-( "

r1y+n+1 1c/2)r(1 10/2) = F(1- 1c/2)(y+1 1c/é) *
(= 1)2h T (3+1-1¢/2)

i — i

M1- 1c/2)(y+1 1c/2)(y+2 10/2)

oooiot [

the series being convergent for Rey > 0. The equation also shows
that:

(3) _ (g)n |'(n+1 1c/2) . 21
Ba = (1), - r(1-1c/2) (2-105)

Substituting (2-105) in (2<97) we obtain:

om0 ;1 gPs1; ) =0, 1=1,2,3,.... , (2-106)
m=0 )

PR PR SR IO SR
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where:
Toln)= (n-;/a)(niifzi72‘)(;:é-ic/a) o (2-10m)
Ty (n)=-1 . 1c/2) (n-2-1c/2) = =1(n-1-1¢/2)[n- 5(5a+3b) ]+
+¢(l=1a)+iv(v+l) (2-108)
a+b} (n~2-1c/ - ——
=(a+b)v(v+l) (2=109)
T3(ﬁ)=1?3(n)§iab(ﬁ535V=ié/2)(ﬁ=2+Viié/2) =
=1ab[ (n=2=1¢/2) (n=3-1c/2) =v(v+1)] . (2-110)
Next, we are going to prove that, when a, b are real:
gl¥= g3) (2-111)
8o that, 10ok1ng at (2=56),(2<57) we should also have:
QE:; = Q(y) . | (2-112)
Furthermore, since T(¥+l-ic/2)=l{y+l+ic/2) and
:: s TR e"m“""‘ﬂyi)/2 = (-1)7, looking at (2-54)
and (2=55) we see that also we have:
vuly) = ¥ . (2-113)

This relation holds not only for Rey> 0 but also for any y,

because in (2-50), which provides the analytic continuation of
v3(y) an 4(y) in the plane Rey {0, the coefficlents Py (y) (n=0,
1;2,3,4) are polynomials in y with real coefficients.

In order to prove (2-111) we look at the differential equa-
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tion (2-42) satisfied by Wj(t) around ts=i and ¥, (t) around t,=
==1. It 18 an equation with real polynomial coefficients and its
two singular points t3 =1 and ta--i are complex conjugates with
exponents 53--1c/2_ 4 It 18 then easy to see that ¥,(t) = W (T),
which means that f_ —hn [see (2-45) and (2-46)]1. Following the

ste] f) “ <4)= .
ps leading to (2<105) for (y) we would find g, =1 f

r(n+1+1c/2)

80 that, by comparison

F(1+ic/2)
(2-111) follows at once.
A faster but not as rigorous way, 1s to observe that (2=112)
and (2=113) hold at least for Yrppeo a8 equations (2-54) and

(2=57) show; since the difference equation (2-<5) has real poly-
nomial coefficlents, the relations should hold for all y.
Turning to (2-106) and (2-<110) we can find: g§3)2 1 and

3y Ty(1) -c/2)[1-1(5a+3b)/2]+c-1ac+1v(v+1)
5,7 == sa s
To(l) 21
Thus, the corresponding series expansion in (2-88) can be written:
(3)

e S had . ) ic(a+3b)+14v(v+1)+2c o0
ge~me/ Atz de/2ry, 21,3 Sy, (2-114)

. 8 2 ‘n=2 (1z)®

N‘ih—‘

Equation (1-94) defines R:(z) as follows:
(c/21)(c/éi+1)-v(v+1)-cb 1

1z, 1c¢/2 i / -
RB(Z)NQ Z,4¢ [1"‘( + ’mé—j:——m— i )E Bes e e

‘s . 1c(a+3b)+14v(v+1)+2c.
= eiz Zic/gtl S ——— - % +g [N 9] ’

8

that is, the expression (2-114) is simply: Ce’ -me/4 RB(z)- An

analogous statement holds for R4(z), we finally conclude that
(2-88) can be written:
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2 1.4

~ A3 Re(z) ; =1L4<0

nJ A3 R3(z) + Aa Ra(z) » $=0 (2=115)
where:

ay=Deh gm0 (2-116)

For R;(z) we use o=v+l throughout, for Ry(z) (when 2v+l 1s not
an integer) o==v throughout. B
Since for real a, b, Z, Rl(z) are real and R3(2)2 ﬁ;(z), we

= i 2
must have A32 Ay, or from (2-116) ¢
c=D ; forreala, b , (2-117)

a fact that will also be verified in the process of determining
these coefficients.
DETERMINATION OF THE COEFFICIENTS OF THE LINEAR RELATIONS

In view of (2=116), our problem is the evaluation of the

have!

1t
O

Avl(QE*c)*Bv2(=3+c)¢6v3(93*6)*DVA(éE*G) =

i
Q

Av, (-2+40) 4BV, (-240) +Cv;(=2+0) +Dv, (=2+0) =

5
Avl(sl*a)¢5v2(el*c)+0v3(=1*q)+Dv4(el+a)

n
o

Avl(q)*ng(q)+Cv§(c)¢Dv4(q) =1 .
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A (4 (4 (&) (4 e
A= “{(3-3)’ B*“é(éaB)’ C‘“é(;ag)i‘nﬂuﬁ(QGB) , (2-118)

where ug?;) (8=1,2,3,4) are the cofactors of the last row of the

determinant P(y) divided by P(y) and where:
[ra (7)) vo(y)  vsly) vy |
) vy (y+1) v, (y+1) v3(y+1) v (y+1)
P(Y) = g (vad) v (vasd .
3 v, (y+2) vg(y+2) Vs (y+2) v, (y+2)
[vy (y+3) vy (y+3) v, (y+3) va(y+3)

P(y) 1s the Casorati's determinant (17 Chapt. XII, 18 Chapt. I)
for the four particular solutions v (y) (8=1,2,3,4) of (2<5). It
satisfies the following difference equation or the first order
(Heymann's theorem):

AL 7L W (2-120)

P(y) p4(y) T ab(y+3ev) (yebev)

whose solution is given by (17 pp. 327=328):

P(y) = (1/ab)Y w(y) = ’ (2=121)
r(y+3-v)r7y+4+v)

where w(y) 1s, in general, an arbitrary periodic function of y
with perlod 1. It can be verified immediately that (2-121)
satisfies (2-120). Since we know how v (y) (s=1,2,3,4) behave as
yrhp°° we can find the form of w(y) corresponding to the parti-
cular set formed by these four solutions. It turns out to be a
constant. As y FApoe we uee the expressions (2-54)-(2-61) into
(2-119) to obtain:

P 1/ab)¥= -
)y e (1/ap) Y (ye1-10/2)F(yele1c/2)

(2<119)
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1 1 1 1

. [fM/e -1/ 1/(yei=10/2) «1/(y+l+ic/2)
[(<1/8)2 (<1/0)2 0 0
[ (<1/2)% (=1/b)3 0 0

In the determinant subtraet the last column from the third and
use the difference as the new third column, without changing the
value of the determinant. The third column becomes:

. o
_ 2i(y+) |
(y+1=1c/2) (y+1+1c/2)
(o]
0

80 that:

Py s 1/ab yi-"—‘ - “E;T-—r:"“‘V .
(Y)y;-%{, (1/e) 73l"'(y-bea;e/zi)f‘(y-héﬂ}c/a*)
1 1 0 1
L=a =1/ 1 =1/(yeleic/2)
(<1/2)2 (<1/6)% 0 0
| (<1/8)> (=1/0)3 o 0

T(y#3=v)(y+dev)

=(1/ap0)7*3 2le 1

¥ T(y+3=v)F(ysbev) (ys2-1c/2)[(yeasto/2)
But (7 Chapt. VIII, 17 pp. 254-255):
F(y+r) _
___Z; ey T=p (2!122)
T(y+p) Y=veo

and this holds as y-—»oco in the sector -n+e argy { m=¢. Applying
this to the last expression, we obtain:

1 T(y+3=v) M(y+dav)

R ¢
= = AR e —on
7> Tly+2-1c/2)M(y+2+1c/2) Sy
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8o that!

7oA N e 54 & 1

P(y)e==> (1/ab)’ TQ%%? S —
Yrnp (ab)” T(y+3=v)F(y+b+v)

_ o, . a5 216 .

Comparing with (2=121) we see that w(y) = <228 » & constant.

Y
So finally: (ab)

P = (1 b y+3 o —““219"—‘ . :_-1«3
P(y) (1/ab) rfy¢35v)rfy*4*v) (2 2 3

We next define the so=called multipliers (17 pps 3T72=374)
N.(y) (8=1,2,3,4) of the solutions vg(y) of (25) by:

Ny (y) = ué?;+1)/P4(y) .

Here p (y) = 1 and from (2-120) we obtaint 1/p,(y)=P(y+1) /P(y);
therefore:

No(y) = {4 piye1) /p(y)

Remémbering the definition of ué?;) (immediately after (2-118)),
we see that ué?;+1) P(y+l) are simply the cofactors of the last

row of Casorati's determinant P(y+l). We have explicitly:

v, (y+1) v3(y+l) v, (y+1)
v, (y+2) vs(y+2) v,(y+2) (2-124)
Vo (y43) v5(y+3) v, (y+3)

n
1
|
|
i,!

vl(y+1) VB(y$l) vk(y¢1)
—— | vy (y+2) v5(y+2) v,(y+2) (2-125)
‘Vi(y*3) Vé(y+5) VA(Y*B)

Ny(y)

v, (y+1) vo(y+l) v, (y+1)
Ny(y) = = === v, (y+2) v,(y+2) v,(y+2) (2-126)
v]: (y+3) vé(y-ﬁ;}) v, (y+3)

oot
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A2 (y+1) 72(y¢1) vz(y#l)f
Ny(y) = === |v, (y+2) vyly+2) valy+2)| (2=127)
2(y) | v}(y+3) V5 (7+3) v5(y+3).

In the present case, where po(y)zl, Ns(y) (s=1,2,3,4) are simply
the negatives of the cofactors of the firat row of P(y) divided
by P(y). The original definition is:

é(;) = pu{y-2IN (y-1) = ab(y+2=v)(y+3+vIN (y-1) . ~ = (2-128)

Using (2-118) we can express A, B, C, D as follows:

[ab(y+3-V)(y+4+,3N (y)1 (2=129)

yE=4+0

= [ab(y+3=v) (F+4+v)N, (y)]y_ g (2=130)

[ab(y+3-V)(y+4+V)N ()] (2-131)

Je=4+0

= [ab(y+3=v) (y+4evIN, (9) oo prq (2-132)
For the expansion of Ry(2) we use ¢=v+l, for that of R,(2), when
2v+l 18 not an integer, we use o=-v.

Working as before for P(y) we can find how N (y) (s=1,2,3,4)
behave as yypwco. Using (2-54)=(2-61), (2-122) anda (2-123) we

find from (2-124):

N _ Tlye3-v)Cly+snv) (a0)*2 (-1/0) 74
1 yrhp B 2iéyfi§;é-1c/é)r(y¢2*1c/éyAA“
| 1 1 1l
. :-l/b 1/(y+2-1c/2) =1/(y+2+ic/2) | ,
(=1/b)? 0 0

or, subtracting the last column in the determinant from the
second and using it as the new second column?




— s

(9 My+3=)T (yebev) (a0} T3 (-1 /p) P41
V" T T oFtye3-io/a)l (yaseiosa)
1 (o) 1

: 1‘1/§ 1 ‘i/(7*2*16/2)  ,
| 1/b2 0 0

Myl =y (2-133)
Similarly starting from (2-125) we find that!

(_b)Y+3 |
R A (2-134)
Starting from (2=126) we obtain:

r(y+3-v)r1y+4+v)(ab)y*3( 1/ab)y+1 | ? 1 1

Ni(y) O = = ——————|-1/a -1/6 ©
LR 5 21ey T (y+2+ic/2) 11/a2 162 o

and by application of (2-122) we can find the following two,
y

s r( 7#3!\/’)

2 A y

1)y A
~N - '("'5‘)" [(ysdev)y~V-3-1¢/2 (2-135)

v=2=1¢/2

(y)

nY

yiﬁf”

Similarly:

, e . ve2+ic/2,., _ - sv=3+1c/2

Y X K D - = vl = ,——r’ 44 e =, (D=]l™

Ny~ 3 Fy+3-v)y = Z=Tlyesev)y (2-136)
. N ; , It 1s a well=known fact

that the multipliers N (y) (s_l 2,3,4) are independent solutions

of the difference equation adjoint to (2-5), i.e. they satisfy

(17 pp. 372-374, 18 Chapt. I)!
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4
2 Py (y+h=n)N(y+4=n) = 0 ,
m=o ~
or:
9 (PIN(Fo4) 45 (YIN(y+3) +a, (3N (y+2)+ay (3IN(y+1)+
+q,(y)N(y) =0 (2-137)

where:

(2-138)

I
-

44(1) =0y (y+4) =

35(7)=p, (y+3) = 2a (2-139)
Ay (7) =P, (y42) =(y+4) (743) +a2av (val) =
= (y+2) (743)+2(y+2) +a2+2-v(v41) (2-140)
a3 () =p5 (y+1)=(a+b) (y+1) (y+2) +(5a+3b) (y41) 430+
+(a+b) [6-v(v41)] (2-141)

q,(y)=p, (y)=ab (y+3=v) (y+4+v) =ab[y (y+1) +6y+12-v(v+1)] .  (2-142)

Applying the method of Laplace's transformation as before, we
form the functions:

45(t)

§(8)
9o (t)

t2+(a+b) t+ab = (t+a) (t+b)

2t%+(5243b) t+6ab

4"’2&"@3*[&2*2*"(\!*1)]tZ*DG*(aﬁb)(6év(v+1.)_)]t+ab[1a-v(v+1)]

t

The corresponding differential equation for ¥(t) is:
(t+a) (440) 820" (£) =4 (L) tH/ (1) +9_(£)¥(t) = O (2-143)

and has regular singular points at t=0, t=-a, t=-b and an irregu-
lar singularity at t=eo. Indiclal equation around t=0:



abp(p=1)=6abp+ab[12=-v(v+1l)] = 0 with roote Py= 4+v, 92—3'V-

Since v 1s positive; for Rey) v=3 the corresponding I(V,t). £=0

is zero for any solution of (2-143). The indiclal equation around
t=<b is: - S P Y
o 4 o  2b%=(5a+3b)b+6ab
B(B=1)+[4;(=8)/(be)1p=0 with roots O and B,=l= e °
"= 0. There exists one solution Wéft)=/l*di(%+9)+&2<t+8)2*e-s--

of (2-143) and, correspondingly, a solution of (2<137) in the form:

N(y) = Eﬁi ety'lw (t) 4t , analytic for Rey) v=3 .
The path { 1s shown in figure (2-4). As in (2=20), it can easily

be shown that I(V,,t) |, = 0. According to (2=52),(2-53),
Norlund's theorem and the statement on page 2-20, we can expand

the above expression, as y===¢°, as follows:

rhp

F( )

N(y) /\‘/ (_b)Y y
rhp r(y+1)

Ly~ Qe

Comparing with (2-134) we see that the above solution is propor=
tional to N,(y).
Similarly, the other solutlion, corresponding to the singular
point t=-a of (2-143), would be identified as proportional to
N. (y) We are interested, however, only in the solutions N, (y)
and N4(y) of (2+137), on which C and D depend. The coefficienta
A, B do not appear in the asymptotic expansions of R (z), R (z)
We will find N ;(y) and Na(y) explicitly. We put:

N(y) = T(y+4+v) M(y) . (2-144)
Substituting in (2-137) we obtain

Qa(y)u(y¢4)+Q3(y)n(y+3)*92(y)u(y+2)+Q1(y)u(y+1)+
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*WQ (y)M(y) =0 , . (2-145)
where, with the use of (2-138)=(2=142), we have:
Qy(¥)=a, (y) [(y+8+v)/T(y+5+v)=(y+4) (y+5) (y+6) +3 (v41) (y+4) (y+5)+

+3(v4l) (v2) (y+b4)+ (v+l) (v#2) (v+3) (2+146)

+v)=2a[ (y+3) (y+4) +2(ve2) (

+(v+2) (v43) ] (2-147)
Qy(7)=a,(7)T(y+64v) /T(y+54v) =(y+2) (y+3) (y+4) +(v43) (y+2) (y+3)+
+[a2e6=v(v-1) 1 (y+2) +(v+3) [a242=v(vs1) ] (2-148)
Q) (¥)=qy (y)=(a+b) (y+1) (y+2)+(5a+3Db) (y+1) +3c+
+(a+b)[6-v(v+1)] (2=149)
Q (y)=aby+ab(3=v) . (2-150)

Applying the method of Laplace's transformation we form the
functions:

dx(t)=t* 412242 (1241) (2=151)
¢é(t);3(V*1)t4+aat3+(V+3)t2+(a+b)t (2=152)
Ql(t);B(V+1)(V+2)t4+4a(V+2)t3+[a2¢6sV(v§1)]t2+
+(5a+3b) t+ab (2-153)
Qo(t);(v¢1)(v+2)(v¢3)t4+2g(v¢2)(v*})t3¢(v*§)[a2+g—v(v*1)]tg*
+[3c+(a+b) (6=v(v+1)) Jt+ab(3-v) (2-154)

The corresponding differential equation for ¥(t) and expression
I(¥,t) are:
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t2<t2+~1>t%""(t)a%(t)t%"»u)wl(ww’<t>=¢°(t>w<t)so , (2-155)

I(v, t)-W(t);E f;* [7*0g . (8} 1=V’ (t);z S [ty+m+l¢m+2(t)]+

m=o dt®
A (8) 7420, (1) = V()L () #(r41) (1) +2d (1) +

b (t)+

+(y+2) (y+1) g5 () +2(y+2) tgh (1) 41245 () 10/ (1) 671

+(y+2) p5 () 4195 (1) Jow (1) 9 %20, (1) . (2-156)
Equation (2-155) has three regular singularities at t,=i, ty=-1i,
t=o0 and an irregular singularity at t=0. For its solutions

around t=0 we put: \lf(t)-em/tz a, n+6 , doi‘i and obtain:
n=o

L4 (t)—em/t’ pa (n+B)a th*h= l‘mem/tz_a th+B=2 (2=157)

n=o n=o
¥(t)=e m/tZ (n+8) (ne8-1)e, tn"'B ~2.2n¢ n/t'S Z (n+p-1)a ta+B=3,
n=o n=o0
sn2e®/ t$ > e, tarh-4 (2-158)
n—O'

¥(t)=¢" [ T (n+p) (n+p-1) (n+B- 2)e, tn*M 3n S (n+B-1) (n+p-2)*
n=o n=o

y C! tn+s 4+3m S (n+B- 2)c 'c,n"'B 5. BZ e tn"'B 6] (2-159)
n=o0 n=o

Substituting into (2-155) and eliminating the common factor o®/b¢P

we obtain:

(t241)[ 3 (n+B) (n+B=1) (n+8= 2)g, t*2- 303 (n+p-1) (n+p- -2)a, tn*l
n=o n=0

+3m° Z (n+8-2)q t"~ 32@: 771123 (ve1) t2+2at24 (v43) te(asd) I+
n=o0 n=o

L P




243

[Z (n+B) (n+p=1)a, 1o Z (n+p=l)e, t“+m22 e, = 1]+{3(v‘+1)-‘
=0 nso nEo

o (v+2) t' +4a(v+2)t3+[a 46= v(v-l)]t2+(5a+3b)t+ab} [Z (n+B)a t0-
=0

-mz e, tn 1] {(v+1)(v+2)(v+3)t +2a(v+2)(v+3)t3+(v+3)[a +2=v(ve+l) ).
n=0

+ t24[ 3¢+ (a+b) (6= ( wi))]t*e-b(st)j Z dntn =0 .
AN

The lowest power of t in this expression is t™'. Equating the
coefficlents of t™! and t° to O we obtain:

t"1s -m’

¢ =m’d. -(a+b)m ag -abma = 0 with roots ml—o, m,==a, mé--b .

¢ 1 sm361*3m2(9‘2)“o“(a"‘b)m""’1‘("*3‘)@&@*2111(“1:)(Bﬁi)aoéabmdls
=(5a+3b)ma +abfa -ab(3=v)a, = 0 , or

For my=0 we get: B,= 3=v .

For m,==a ! (3B,=v=9)a=2(a+b) (B,-1)+5a+3b+b(B,+v=3)=0, or By= v+2.

Thus, three normal asymptotic solutions around t=0 are obtalned:

Vo (t £2°V[1 (I) 407
3 ’t—vo [ +n§_la

II(t)t__.o e a./t V+2 [1+ Zlar(lII) n]
n=

.b/t V+4 [1+;E ﬂéI ):n]
n=1

¥11:(4 3%

Upon any ray drawn from t=0, for which Re(-a/t)< 0,
Re(=b/t) {0 and for any y we have:

Um, | ot7¥, (t)=11n t?*lw (t)=11m ty*av”(t) 0, for s=II,III.

t-+0 t—+0 t-+0
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Rey) v=3, we are golng to0 have:

¥+l F+2, ¢
limt_,ot A2 $(t)=lim, otV ¥ (t)=1im, | tTTNI(E) = 0 .

Therefore, for any path { in the t-plane, gtarting and ending at
t=0 along rays satisfying the conditions Re(=a/t)< 0, Re(=b/t) £ 0,
while Rey > v=3, we are golng to have I‘(w,t)ﬁle = 0 for any solution
V(t) of (2=155). This is easily verified by looking at (2-156),

(2-151) =(2=154). Furthermore, the same result is still valid, if

the path approaches t=0 along either of the two limiting rays:
Re(=a/t)=0, Re(~b/t)€ 0 or Re(-a/t)&0, Re(=b/t)=0, if y is
restricted by Rey ) max(v=3,=v=2); & condition that reduces to the
previous one, Rey Dv=3, if v31/2. Agaln; a look at (2-151)-
(2-154), (2-156) and (2-157)=(2-159) verifies this statement
immediately. As before, these observations will serve to fix the
path of integration in the t=plane.

The 1nd1c1al equation of (2<155) around t4—1 is:

t€ ?1('&)
B(B=1) (p=2)- [;Sk‘t*_{)]t_iﬂ(ﬁ-l) = 0 with roots 0, 1 and

By= ve2-1c/2 . 29, ()
Indicial equation around ty=-i: B(B—-l)(5*2)""[:5'('3___1;']':.:-1&“'1). -

= 0 with roots 0, 1 and 83= v+2+ic/2.
There exist two solutions of (2=155) in the form!

¥, (t-1) = (t-1)V+erie/2ry, 2 2 (10", -1l (2-160)
,, 2%
¥a(te1) = (640)*2H0/200, F o (440)0] , a2 (2-161)
- n=l ©

and, correspendingly, two solutions for N(y) in the form:
F(y+4+v)

y-l - -] 02
o j‘a ¥,(t-1) at (2 716.2)

M) =
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Flysdv) £ o
Nz (o) = éémnyéliY‘“J}Sty-lW3(t*1)at ; (2-163)

where the possible paths of integration are shown in figure (2=5).
The 86 defined funcetions are analytic for Rey > v=3 and 639 Z4 as
in figure (2=5), or for Rey) max(v=3,=v=2) and Q and/or {,
tangent to the limitlng rays as t-vo. For v>1/2 both céases are
equivalent. As J=wo0 we can exp ' 5 nndtd ARd ai i .

rhp
in the following forms:
C(yeaev) (y) .
< e (I 4
N(a) (y) i [

yfﬁ'f’” %o I (y+ve3=1c/2)

~ a7 F(y+4*v)y‘“*3*1c/2

r(y+4+v)r(y) o Ky

N(S)(Y) 6 O e (_ \f f P—— -
yth My+vesetc/2)

== tiaeed] AV

Comparing with (2=135),(2=136) we see that the particular
functions N4(Y) and Ny (y) we are looking for, are cbtained if we

0
I"( 4av)
Ny(3) = - = tff’ 1 f 4 7, (4-1) at (2-164)
4 ) 1

They are analytic functions of y for Rey > v=3 and ( , l# as in
figure (2-5), or for Rey ) max(ve3,-v-2) in the limiting case,
mentioned above. Their continuation to the left is provided by
the difference equation (2-137) itself, i.e. by!

1

N(y)=- ;b(y+3;;)Ej*A*v)LN(y+4)+2aN(y+§)+q2(y)N(y+2)+
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+q, (y)N(y+1)] . (2-166)

Therefore, they have simple poles at thée points:
y=v<3-n and y = «v=bden , n =0,1,2,.s. . (2-167)
Another remarX ¢an be made at this point: When Res3-v+2-
=Image/2 > =<1 and/or Rep 4=v-|-2-0-Ima.raL5c/2) =1, the integration around
the small circéles surrounding the points =i and/or i, in € and/or
24, yields o, as the radius of the circles is allowed to go to 0.

the lines é~ and/or [A, as shown in figure (2-6) The only change
in the expressions (2=164),(2-165) for N,(¥), N (y) amounts to an
appropriate céonstant factor in front, easily determined in each
case.

Explicit solutions of (2-137) for Ny(y) and N,(y) can be
found by the method used previously to obtain explieitly the
solution Vs (¥) of the difference equation (2=5). The steps are
exactly the same. The factorial series obtained for v (y) is
convergent for Rey)»o. In the present case the series obtained
are at least asymptotlc and the process 1s at least formal. We
gtart from the defining integral representations (2-164),(2-165)
and proceed to obtain explicitly the series developments (2-160)
and (2-161) for ¥,(t=1) and Vs (t+1), which satisfy the differen-
tial equation (2-155) with coefficients Qs(t) given by (2-151)=-
(2=154). The final results are as follows!

(+1)y F(y+ssv)T(y)

N — — T 2-16
g(y) 2 Tiyrersiiesa) (y) (2-168)

di d.
T(y) 1- = p + ‘]—g—— —— == doese . (2-169)
y+v+3¥ic/2 (y+v+3+ic/2)(y+4+v+ic/2)

Recurrence formula for the coefficlents d:
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'.a

dp= EEE (004, 1 +75(x)8y ot (x)a, g7, (X)a) ,e7e (X)) o4
#elx)a, _d 1 a1 3 4450, §=1,2,3,..... (2~170)
X = neviie/2 (2-171)
fl(x)ailxésflav*17$i(7as3b)]x¢4v2¢8Vaac$1(Aav¢30) (2=172)
‘72(1)552533*[39V*1°2§i(35§i73)Jxéic18#2*81V$89*25é3&2gi(gbiaiiéﬂtvw_~___i
+39)) Ix+2v>410v24 (12=02-ab) v=3acT1[ (3a+b) v2+ (11a4b) ve3e] (2-173)
5 (%) =x{30x7~[ 56v+22641 (b=198) 1x%+[ 3 (11v2485v+172-82) 421 (3b-
~a(12v450) ) 1x=6v7=65v2+(2a2-245) v49a2-33041[ (7a+b) v2+ (55a+b) v+
+1082-8b1¢ ) (2-174)
7, (X)=x(x=1) (x=v«5) [ ~20x2+ (24v+122%1108) x+a2-Tv2-6Tv~
=174+12a(3v+16) ] (2-175)
75 (X)=x(x=1) (x=2) (x=v=6) (x=v=5) (Tx-4v-25+21a) (2-176)
Tg(x)==x(x~1) (x=2) (x=3) (x=v=T) (x-v=6) (x-v-5) . (2=177)

Throughout the above relations the upper sign is used for N4(y)
the lower for N, (y).

Different, but equivalent, expansions for Nk(y) ) N ;(y) can
be found by employing Boole's operational method for solving
difference equations with rational coefficients, as explained in
reference 17 (Chapt. XIV pp. 434-461). It is essentlially the me-
thod of undetermined coefficients, completely analogous to the
method of Frobenius for differential equations. The method is
tedius and lengthy but stralghtforward. The final results are as
follows:



(-o»i.)y r(y+4+v)r(y+3-v)

Ny(y) = = = — (y) (2-178)
g(y 2 My+6310/2) y (
ds d, »

T(Y) = 1+ ’Ji § ———— 2 Fieaio ‘ (Qii79)

j+6iic/2 (y+6+1c/2)(y+7+1C/2)

Recurrence formula for the coefficients dyt

n= %;f n=1T4(X)+dy ofa(x)ed, SF (x)+d, Ty (x)+dp _ofo(x)] 3
d= 13 440, J=1,2,3,:... (2-180)
x = 2=v=n+lc/2 (2=181)
£ (x)=x(x=1) (x=2) (x+2v41) (x#2v) (x#2v=1) (2=182)
£3 (x)=2(x=1) (x=2) (x#2v) (x42v=1) (3x+3v-3%1a) (2-183)

1"2(;«);_-‘(1:-,2,)‘(x_-q-fz'v'-l)‘IfI'ISl.kitéio»la.("?'vf-“l@f-'i-iil’.'g'a.,,)x’-‘l-lévéi'-l&;2V'il>30-"832:"i
Fisa(2v=3)] (2-184)
(x)-16x +[ 48v=90%1(11a-b) Jx2+2{ 20v2. ~94v+85-a2F1 ( (11a=b) (v-2)+
+b)]x+8v”684v*+(184-2a2)v¢4a3610831[8av"+(7b—47a)v+
+445-8b] (2-185)
r4(x)=9x2+[18v-39312(Ba-b]x+8v2—40V+42-ac31[2(3&-b)v*
+Tb-15a] (2-186)

The sign convention is the same.
The inverse factorial series in all these expressions are at

least asymptotic for large |y|. It is also obvious that with real
a, b d(3); 5(4), Then: N3(y) = F,(§), or for real y: Ny(y)=N,(y).

Referring to (2-131),(2-132) and with y=o=4=v=3 for Ry (z), y==ve4
for Ra(z) (when 2v+1 is not an integer), both of which are real




values, we conclude that: C = D , a fact which was inferred pre-
viously, equation (2-117), through different consideratlons.

It may also be pointed out that different expansions for
Na(y), Nj(y) cah be obtained, which may prove better, from the
computational point of view, depénding on the particular values
of a and b under consideration, if in (2-137) we use the general
substitution:

yor (2-187) —

i
Il

N(y) = T(z+h) M(2) , =z

and solve for M(z), employing either of the above methods. The
parameters h and r can be chosen convenlently in each case 80 as
to optimize, from the computational point of view; the expansions
obtained. Both expansions, given explicitly above, were used for
the computations in Chapter 3, PART I, ylelding the same values
based on the change of variable (2-187), were also used for
comparison and cheék on the results.

The evaluation of C and D 1s based on equations (2-131),
(2-132), with y=o-4=v=3 for R,(z), y=o=4=<v=4 for R,(z), when,
in the latter case, 2v+l 1s not equal to a positive integer. In

general, these values will not be useful for direct evaluatlon of
N(v-3) and N(-v-4). However, we can evaluate N,(y), NB(Y) at y,
y+l, y+2, y+3, where y 1s adequately large and then use the
difference equation (2-166) itself to obtain values for N(y-1),
N(y=2) etc., up to N(v-3) and N(-v-4).

All these considerations can be expressed in another more
compact and general form, which will also prove necessary in the
next section, where the case of integral values for 2v+l is
investigated.

Instead of the initial conditions (2-70)-(2-73), we make use
of the general ones given in (2-68): ¥(n+o) = a for all integers
n. It has been proved that they are equivalent to the four
expressed by (2-70)-(2-73). The function ¥(y) 1s defined in (2-69).
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Starting from (2-119), the definition of Casorati's determinant,
we multiply the first, second, third and fourth c¢olumns by A, B,
C, D, respectively, add and use the sum &8 the new fourth column.
Applying (2=69) we obtain:

iy vy vsly) Wy |
B(y) = ; vl(y+1) VA (y+1) Vg(?*i? ?(y+1);w FHNd
vy (y+2) v, (y+2) v (y+2) v(y+2)|
(y+3) v, (y+3) V5 (743) ¥(y+3)

el

This, incldentally, shows that the constant D is equal to
the constant ratio of two of Casorati's determinants of the
difference equation (2-5): D = P4(Y)/?(y), where P(y) corresponds
to the four particular and independent solutions v_ (y), 8=1,2,3,4
of (2-5), while P (y) corresponds to the set of solutions va(y),

8=1,2,3 and ¥(y) of (2=5). From (2=188) we obtaint
v(y+3) (Y) v, (Y) v3(y) v(y+2)

D= s——— 1 (y+1) v. (y+1) Vs (y+1)] =
P(y) vy (y+2) ¥, (y+2) vy (y+2) 2(y)

[7a(y)  vo(y)  vsly) v(y+1) vi(y) v () vsly) |
* vy (y+l) v, (y+1) v (y+1) A (y+2) v, (y+2) v, L (y+2) | =
(y+3) v, (y+3) Vs (y+3) (y*3) v, (y+3) v, (y+3)j

(y+1) v, (y+1) Vs (y+l)

| vy (y+2) v2(y+2) v3(y+2) ‘ (2-189)
POY |4y (ye3) va(yes) v5(y+3)

P(y)

v

l—‘

7 V(y)

We call (a), (B), (v), (&) the four terms of (2-189). Making use
of (2-177) and (2-120), i.e. P(y+l) = P(y)/pa(y), we have!

(@)=[¥(y+3) /P(y) 1P (y=1)N, (y~1)=¥(y+3) p, (y-1)N, (y-1) (2-190)
(8) = =V(yIN,(y) . (2-191)

For (B) we observe that for 8=1,2,3 we have from (2-5):

@«i{
%

&
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Vg (743) = =[ps(y=1)v (7+2)+p,(y=1)v, (y+1)+2av (y)+v,(y=1) 1/p,(y-1).
Theri we subatitute into the last row of the determinant in (B)

and break it up into four determinants with the same upper two
rows, as in (B), and with last rows containing each of the four

terms in the above expansion, respectively. The second and third
of these determinants vanish because théy have two proportional
-pows. There remains! o

(y+2 V(1) v (T va(F) | sigen)
(B)= === = v (y+1) v, (y+1) v3(y+1) + KA R S
2(s) Pa" "V |y (3+2) vo(ys2) vylyea) P py(y-1)

vy vy (y) vs(y)
o [ve(y+1) v,(y+l) vy (y+1) ‘
vy (y-1) v,(y=1) v5(y=1)
Interchanging first and third rows, then second and third, in
the last determinant, we finally obtain:
¥(y+2) ps(y-1) F(y+2) 1

— P(pel)N,(yo1)+ e ——Zes B(y-2)N, (y-2)=
PO poen) RN TRGY nagen) e

(8)

T(y+2)p5 (y=1)N, (y=1)+¥(y+2)p, (y-2)N,(y-2) . (2-192)

Similarly for (y) we substitute the elements of the first

Vo () = =[P, (y)vg (y44)+ps (7) v, (743)+p, (y) vy (y+2) +2av, (y+1) ],
with 8=1,2,3. We finally obtain!

Fly+1) vily)  vy(y) vs(y) e( +1)
(1) = = o b, ()| vy (r42) Va(y+2) vy (y42)| - memr 28 -
*(y) .vl(y*B) vg(y+3) v3(y+3)
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| ¥ (y+1) v,(y+1) v3(y*1)‘ Fy+1)
vy (y+2) v, (y+2) Vg (y+2)| == === p, (y)P(y+1 )N, (y+1)~
v (743) va(ys3) vy(ys3)| P
v(y+1) . o
- P(~3 2aP(Y)N, (y) =T (41 )N, (y+1) -2a¥ (y+1)N, (y) . (2-193)
P(y

Substituting (2-190)-(2-193) into (2-189), we finally obtain:

D= F(y+2) p, (y=2)N, (y=2) +[F(y+3) p, (y-1) +7 (7%2) 5 (F-1T IV, (y-1) =
<[T(y)+2a¥ (y+1) IN, (y) =T (y+1)N, (y+1) . (2=194)
For y=n+¢ and relation (2-68): %(n+e)2aﬁ for all n, we obtain:

D = a0, (n=240)N, (n=240) 4[ 6, 5D, (n=140) 48, D3 (n-140) N, (n=1+0) -

-[a +2a a, 1]N4(n+d)-a 1N4(n+1+a) . (2=195)

For an appropriately large value of n, the four values of
N,(y) appearing in (2=195) can be evaluated. As a check, we
evaluate D using (2-195) for 10 or 12 values of n, elther conse-
cutive or not. For n=-3 we simply get: D=p4(a-4)N (06=4), as in
(2-132) C 1is given by the same equation (2-195), if N3(y) is

! ~\Z) , 2. For the coef-
ficlents B " of the 1ogar1thm1c "solution R (z) we obtained in
Chapter 1, PABI II, the recurrence formula.

By r (m+v+1)+ B lr (m+v)+Bm 2 2(m+v-1)+Bm 31 3(m+v-2)+:B 4f4(m+v-3)-

= g F o (mevel)+ay F) (mev)+ay oF,(mev-l) . (1-55)

B N . T o v

o, atbnhog 4o ottt vt oo

oy SR SR 05
A S

R e -



The b, 's are conneeted to the B_'s throught

n = 2v+elsm |, bnﬁ bév*i*mﬁ B, (1<54)

The initial conditions for these formulas are found from (1=53)
and (1=54) to be!

B

i

With Bo= Dyy,q= O and b, 88 in (1=51), these conditions can be
replaced by the equivalént set:

1]

2v béd‘v ’ . “2: b~ “3 b“d,‘".,‘i

Los]

B,=0,B4=b

f

B_3= Doyas™ Polov-z (2-197)

where b, and d2v’ d2v 1 dev .5 are definite numbers defined
previously, equation (1<50). It is easlly checked that (2-197)
lead to the values (2-196) through the difference equation (1-55)
and the speclal value of b, in (1-51).

We next write m+4 for m in (1-55). Remembering from (2-68)
and (2-69) that in this case a = ¥(m+v+l) we obtain:

£ (m+V+5)B *4+fl(m+V+4)B 3+ (m+v+3)B ~f3(m+v*2)Bm+1+

h
+f a(m-w-o-l)Bm: F, (m+v+5) 7 (m+v+5) +F, (m+v+4) V(meved) +
+F, (m+v43) T (meve3) . (2-198)

We introduce at this point in place of m+v+l the general variable
y and in place of B the functlon v(y) such thatt

v(m+v+l)

n

B, for all integral values of m. (2-199)
Equation (2-198) transforms into:

Zf (y+h—m)v(y+4-m) ZF (y+4-m)v(y+a-m) .
m=0 m=o
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This equation for y= m+v+l, m belng an integer, readily reduces
to (2=198), if (2=199) 1is also used. We write it finally as
follows:

Pa(Y)V(Y¢4)+93(Y)V(y¢3)#pz(?)v(y*é)¢p1(y)v(y¢1)¢p°(y)v(y) =

= q(y)F(yed)eqy (1) F(y+3) 4, () F(y+2) (2=200)
_where, with the use of (1=38)=(1-45), we have:
py(y)=t, (y+4)=abl (y+4) (y43) =v(v4l) J=ab(y43=v) (y+4ev) (2-201)
Py (7)=f, (y+3)=(a+d) (y4+3) (y+2) +e(y+3) = (a+d) v(v+1) (2<202)
D, (7)=f,(y+2)=(y+2) (y41) +a2av(v41) (2-203)
?1(?)sf3(y+1)225 (2-204)

P (¥)=f,(y)= 1 (2-205)

. a |

q1(Y)=?1(Y*3)=-(a+b)[2(y+3)-1]-@2—2(a+b)(y+3)+2b=

(2-207)

qo(y);Fa(y*g);ag(y¢g)+1gagyg3= - —en (2=208)

The last expressions for q,(y) as =[dp,,,(y)/dy] , 8=0,1,2 are

found from (2-201)=(2-203) by differentiation. In (2-200) the
function ¥(y) 1s the solution of the difference equation (2-5)
which corresponds to Rl(z), l.e. the one that can be expressed as:

F(y) = Avy (y)+Bv,(y) +Cv5 () +Dv, (¥) (2-209)

and which reduces for y=n+v+l to ¥(n+v+l)=a , the coefficients
of R (2); v (y), 8=1,2,3,4, in (2-209) are the previously found
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four independent particular solutions of (2s5).

Comparison of p.(y), =0,1,2,3,4, a8 given by (2-201)=
(2=205);, with (2-6)=(2-=10) shows that they are identical with the
equation (2~200) is an inhomogeneous difference equation whose
homogeneous part is identical with (2-5). We are looking for the
special solution vi(y) of this equation; which satisfies the

vy (n#v+l) = B = Doeavel for all integers n . (2=210)

As before, only four of these conditions are sufficlient, i.e.
from (2=197):

vy (v41)=0 , vy(¥)=B_3=b d,, » V3(v=1)=B_,=b 45, »

Vi(vaa)EBi3§bodévié :

More generally we can use (2=210) for n, n+l, n+2, n+3, where n
is any integer and Bn% bn+2v+1’ the coefficients appearing in the
definition (1=57) for R,(z).

The general solution of the inhomogeéeneous difference equation
(2-200) consists of the general solution of the homogeneous equa=
tion, i.e. of (2=5), plus a particular solution vs(y) of the ine-

homogeneous equation (17 Chapt. XII). That is, we are going to
have!

vy (¥) = Bvy (y)+Fv,y(y)+Gv5 (y) +Hv, (y) +v(y) = V(y)evg(y) , (2-211)

where E, F, G, H are constants, which are going to be determined
8o that the initial conditions (2-210) (Just four of them) are
satisfied.

In order to obtain a particular solutlon vg(y) of (2-200) we
consider the function V(y) as defined in (2-209). It satisfies
equation (2-5), 1.e.



ﬁa(v)$(y*4)*p3(y)ﬁ(y*z)*pg(y)%(y+2>+pi(y)%(y¢1)¢po(y)$(y) =0

Differentiating with respect to y and remembering from (2=206)«

i dap, () ; . ap,(¥y)
(2+208) that < =-q,(y), 2 =-q,(y), Fo—= ==q,(¥),
1(y) dpo(y) o
while === S S==== = 0, we Obtain:
ay dy
aF(y+4) AV(y+3) - @F(y+2) A% (y+1)
pl&(y)T +P3 (Y) T +p2(y)'—*ﬁ5}—*ﬁ +p1(y)Tﬁ- +
av(y) . A ] .
+Po(y)‘“"z“ = ap(y)F(y+d) ey (y)F(y43)+a, (y)F(y+2) . (2-212)

After comparison with (2-200) this equation shows that a parti-
cular solution of (2=200) is:
av(y) dvl(y) _dv,(y)  dv,(y) dva(y)

vs(y)= = oy S Ay B ¢ rramt il (2-213)

where A, B, C, D are the definite constants corresponding to the
first solution R, (z) with o=v+l. A complete solution of (2-200)
has thus beén found.

In order to obtain the asymptotic expansion of R (z) for
large |z| we proceed as before, for Ry (z), making use of Theorems
I and VI. From its definition in (1-57) R (z) can be writtent

R, (z) (1nz)zv+12v(n+v+1)z +z" Zb 2 +z'v Z b.z" .
=0 n=o 1 n=2v+l °

In the last summation put n=2v+l+m; then from (2-210):

2v+1+m
= vi(m+v+1), so that for |z]l<min(la],|b]) we have:

Ra(z);j;_z Z bn, %+ (1nz) AR Z 7(nevel) 2Raz¥*l Z vi (m+vel) 2P
, ! neo neo &

Z b 2"+(1nz) zv"'l S F(nevel)ZPeg¥tl Z v (nevel) 2%
n=o B n=o n=o -

sk



n+l Z [Ev (n+v+1)+Fv (n+v+1)+Qv, (n+v+1)+Hv4(n+v+1)]z .
n=o

where the index n replaced m in the last summation and use of
(2-211) was made. Thus we can write:

Rplz)=2 Zb 2suy (2)4u,(2) 4 lel<min(lal, 1bl) , (2-214)
f=o
u, (2)=(1nz) 2" E $(n+vel) 2MesV*L E Ve (nevel) 2B (2-215)
rso ri=o - |
‘uz(z)' "'lZ_V(n-w-o-l)zn—le Z[Ev (n+v+1)+Fv (n+v+1)+
: n=o n=o

¢Gv3(n+V¢1)*Hv4(n+V¢1)]Zn . (2=216)

Take u,(z) first. For large |z| its asymptotic expansion is

given as (2-87) shows for Rl(z) and for o=v+l. It was also shown,
immediately after equation (2-114), that:

12. 10/2[1+ ler(l})/(iz)n]_R (z) and e-iz 10/2[1+ st(la)/( 12)!1]..
n=

= Ry(z). Thus, as in (2-87)!

2 V(- 1)
2(z)N _zv-b-l 2 n+v+

Z - ;zn - er,ﬂc/a Rl&(z) ’ °<¢<ﬂ
P V(= 1l
et 3 L e/t g 5(2) , =1 ($<0
n=1 "
+1 22 V(=n+vel)
N,zv*lElT _~~nc/4|:eB3(z)+HR4(z)] , ¢0 .

(2=-217)
Next take u,(z). It can be written as follows!

l(ar.@;(z‘—’éj(ma)zn)J,;m = (&5 uy (2,0 Jgyyy »  (2-218)
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where:
uz(2,0) = 273 F(n+0)2™ , [zidmin((a),b]) . (2<219)
n=o
In fact, performing the differentlation we have!
80 , 00 3V (n+o)
S =(o. 0, O g s -
U4 (Z) [za(an)Z_V(n*U)zn‘F Z Z i —— z'J_vE, o=
1 n=o n=o °° o=vel
But:
Bv(n-w) i c}i’i(rﬁ&) ) .
TR0 G‘V+1—[ ]n+e'—n+v+ =[ (n+0o) ]n+0'-n+v+1- v (n+v+1),

where use of the definition (2=213) was also made. Thus!

[

(1nz) zw':L Z F(n+v+l) z° n, zw'1 Z v (n+vel) 2t

n=o n=o 5

in exact agreement with (2=215). The part u, (z) in Rg(z). in the
form shown by (2-218), ceuid be written down from the beginning,
1nteger, we had rollowed th_e senera;l, method o_f Frobenius, as
applled in this special case and explained in reference 9 (pp.
396-404) .

The asymptotlic expansion for large |z] of Us (z,0), as given
in (2-219), can also be written down following (2 -87), with o
considered now as a variable parameter. Referring also to (2-209)
we have:

-2° E——.- + ceme/4 Ry(z) , -m<$<o0

93 L2, +o7"/A[cR, (2)41R, (2)] , $=0 . (2-220)
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Here ¢ 18 a varlable parameter varying around the root v+l of the
indiclal equation about z=0 of equation (I 1=50). uz(z,a), as
given in (2~219) for Jzl<min(lal,ibl), L& a uniformly convergent
gséries of analytic functions of ¢ (¥(y) was proved to be analytie
for all y and z° 1s an analytic funetion of ¢) and ean, therefore,
be differentiated any number of times with respect to o (9 p.
400). Then; for any o, we let |z|+se and obtained the asymptotic
expansions (2<220) fer u.5(z,o') Observe that the depen e of _
1‘13(2; on ¢ appears now (and for z in any sector) only 1n the

series Z v(-n+a)/z . ¥(§) 1s analytic for all y and z° is
n=l

analytiec for all ¢. For o=v+l we have: ¥(=n+v+l) = a__= 0 (n=1,2,

354600s)s Then; with o varying in the vieinity of v+1 and for

l/

sufficiently large |z|, =z Z F(-n+8) /2" 15 a uniformly convergent
n=l

serles of analytiec functions of o. Therefore, differentiation
- with respect to ¢ any number of times is permissible, as before.
Thus we obtain:

3, (z,0) : >, 62 ¥ (-n+0) 60 v(-n-w)
T80 lzdwoo z“éc'[zgn%‘ ;:f-'*l-*m’z n§1 h
o o 3V (-n+¢) o
-2 2 —<5— F oo {4 (2-221)

Flnally for o=v+l:
w0 V( -n+v+l)

, : +1
ul(z)—@— uz(250) 1oy ay I%/""!(lnz,zwnélv zn* - =
1 2 2V (=n+0)
zwln%[‘o‘(,;hja‘ Jomvan (1/27) 4 =w g .

- W (=n+0)
But: ¥(-n+v+l)=a_ = 0 (n=1,2,3,....) and [37-";;‘ o=vel T
4 =)

= vg(-n+v+l). Therefore:
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ugfz) AV -f"*lz\r (onevel) 2= . (2=222)
12100 n-1 z

Substituting (2-217) and (2=222) in (2=214) we obtain!

, - 9 oo V(=n+v+l)
Ry(2) A 2™ 3 b 2Pzl 2 v (onewit) e 2" F e
' (zZl»0 n=0 n=l - 2 n=l z

v/ M Ry(2) , 0<pLr

> A = o9 V(-n+v-r1}*“*“
. -n+v+1)— S ———
2 n=l z°
-1 $<£0
3 80 V(=n#v+l)
(=n+ve+l t)li; AR 2 = Sm—
Z n=i 2

+éiﬂé/thR;(Z)*HRA(Z)] » $=0 .

According to (2=211) and (2=210)¢ v, (-n+v+1)+V(-n+v+1)—vi(-n+v+1)-
"’b,,n_..zv +1: Thus, the first three summations in the above expansions

can be combined as follows!

,-v +1
AN =
n=o0 n n=1 A

since b_ 215 DogSrereee= 0. In the last summation change the index

as follows: n = 2v+l-m. The expression becomes:

b
-V ) _
£ o z & =
n=o n n=2 g—!.l

y 1.6. 1t vanishes. Therefore:

~ Ay Ry(z) , ~m{$40
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vwhere:
Ay, = HeTT/H Az = go™me/4 (2=224)

The result is in complete agreement with theory (9 pp. 168=
174, 10 pp. T2=73) and analogous to the result for Ri(z).

Determination of the Coefficients of the Linear Relations:
In order to evaluate G and H we follow a method similar to the

Vi(Y"Vg(Y)ﬁvi(y)a$'(y)é Evy (y)+Fv,(y)+@vy (y)+Hv,(y) .  (2-225)
As in (2-188) we can then obtain:
vi(y)  valy)  vs(y) v () =¥ (y)

1 |vy(y+1) vé(y*l) Vs (y+1) vi(y¢1)s$’(y*l)\

H i-;?;? v, (y+2) v, (y+2) v3(y+2) v, (y+2)=¥/(ys2)| -  (2-226)

vy (743) v, (y43) v5(y+3) vy (y+3) =¥/ (y+3)

The procedure that led from (2-188) to (2-194) shows that H ean
be expressed as follows!

H= [vi(y¢2)-$‘(y+2)]pa(y-z)na(y-z)*i[vi(y+3)e$'(y*B)Jpa(y-l)+
*[vi(y+2)—5'(y+2)]p3(y—1{}Na(y-l)—ivi(y)é*’(y)+2a[v1(y+1)a
=¥/ (y+1) ]} N, (y)=[v, (y+1)=F! (y+1) N, (y+1) . (2-227)

Differentiate (2-194) with respect to y:

0= ?'(y+2)94(y—2)N4(y92)¢§’(y+3)p4(y=l)N4(y91)¢$'(y¢g)p3(ygl),
ona(ysl)stﬁ'(y)*gg§'(y+1)]N4(y)e?’(y¢1)N4(y¢1)*5(y+2)%;[94(y!2)'
-N4(y-2)]+v(y+3)d -p, (y=1)§, (y-l)]+v(y+2) [pa(yel)Na(ysll]!

=[¥(y)+2a¥(y+1) [aN, (y) /ay]-v(y+1) [aN, (y+1) /ay] . (2-228)
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Add (2-227) and (2-228):

H = v, (y42)p, (y=2)N, (y-2)+{v, (y43)p, (y=1) +v, (y+2) p5 (y-1) IN, (y~1) -

sivi(?)*éavi(y+1)lﬁa(y)-vi(y¢1)N4(7+1)+$(y¢2)%s[pa(y=2)- ‘
N, (y=2) 143 (y43) 5500, (7=1)N, (y=1) 147 (y+2) =Ly (y-1)N, (y-1) -
- [¥(y)+2a¥(y+1) (AN, (y) /dy]-¥ (y+1) [an, (y+1)/ay) . (2=229)
Putting y = n+v+l; where n any integer, and observing thatt
Vi(n+v+l) = B,= byooyey and F(nevel) = a, »
we obtalin: . _

H=8B, 2p4(n+v-1)N4(n+v-1)+[B 3pa(n+v)+B 2p3(n+v)]N4(n+v) [B +

+2aB ]Na(n+v+1)-B +1N4(n+v+2)+a +2[p4(n+v-1)N4(n+v-1)+

ri+l

+p4(n+v-1)N4(n+v-1)]+a [p4(n+v)N4(n+v)+p4(n+v)N4(n+v)]+

n+3
¢an*2[p3(n+v)Na(n¢v)+p3(n+v)ﬂa(n+v)]-[an+éa an+1]NL(n+v+1)-
8,4 N4 (neve2)
or:
H = [Bn*épk(n+Ve1)*an*apg(n*Vel)]NA(n+v~1)+[Bn¢3pa(n*V)¢Bn*2-
(n+v)+an+3p4(n+v)+an+2p3(n+v)]N4(n+v) =(B. +2an+1]N4(n+v¢1)e

éBnﬁlng(n¢V+2)+an*2p4(n¢Ve1)Na(n+v!1)*[an*3pg(n¢V)+gn¢2p3(n*V)3-

"Nj(n+v)=[a_+2a 8, INj(n+vel)=a N (neve2) . (2-230)

Exactly the same expression gives G, 1if N (y) 1s substituted in
place of N4(y)

An expression for N/(y), at least asymptotic for large |y|
in the right half y-plane, can be obtained by direct differentia-
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tion of (2=168)=(2-169) or (2=178) =(2-179) (17 pp. 434-461 and

L(5) = Latn/2eb(yevad)ob(y) I, (y) e SE0 L)l
Ng(y) s E:in/2+*(y+v+a)+‘¥(y)<N§y + = =~ —

. . d, V(y+ves¥ic/2)
«[¥(yeve3F1c/2) 4 & J Mt s

Feve33ic/2

(y+v43%1¢/2) (yevesite/2)

NA(Y) = [adn/2e¥(yaved) s¥(ye3-v) I (1) (£1)7 F(yaves) M(yasay)
Ng(y) = [#in/2+4¥ (yoved) 4V (ya3=v Ng ¥)+ Y - f(y+6$1c)§3”’

r B 4, ¥ (y+7+ic/2)
[ [w (y+6;1 6/2) & 1 ‘W‘7')‘:i‘i¥i>fi;f.“_f P
y+6+¥ic/2

1,V (y+8%1c/2 )
+ :~d3£¥f-t§fygg; $eeenes] (2-232)
(y+6%1c/2) (y+7%ic/2)

where ¥(z) =r(z)/I"(2) (17 pp. 241-267). ¥(z) satisfies the
relations:

V(z+1) = ¥(z)+

N

s ¥(1) = -y = Euler's constant . (2-233)

It can be checked easily that for real a, b: G = H. We have
expressed H (@) in terms of N,(y), Ni(y) (N5, N3) only, just as

D (C) was expressed in terms of N, (y) (Ng).

Concerning the computation of C, D, G, H through equations
(2-195) and (2-230) we observe that n can be given values large

enough so that the factorial series for N(y) and N'(y) are easily

and quickly computed. For such n, I(x) and ¥(x) can be evaluated
with the use of their well-known asymptotic expansions:



il
M(x)~v e ® x x=1/2 (2ﬂ)1/2[1+ T%i ¢ — )
79"“ 125 — iiioéco.] (25234) '

20901883@x
P | 1 1 1
¥(x) A/ Lnxs 2= = =2es 4 + =4

2% 1952 2405 132x10 &

* A_6 _l "_‘114 "‘o sdeenw oo [ (2-23_5)

32760x 12x

Even for x=2 the second series yields V(2) with an accuraey of

6 decimals, while the same is true for M(x) and x=3.

Notice, however, that n can not be given very large values
in (2-195), (2-230). Since an's and B 's (the coefficients of the
power series in x of R (x) and R (x) ) are involved in these rela
tions and the accuracy of thelr evaluation diminishes as n inérea
ses, there is a limitation to the values of n that can be used.
It was also observed that for large n, the summation of the terms
in the right half sides of (2-195) and (2-230) destroyed the
accuracy rapldly by eliminating the first significant decimals of
the individual terms. In each particular case there 1s an optimum
range of values of n for which (2-195) and (2-230), with a given
accuracy of computatlion, yield the most accurate results. To make
sure that the values of C, D, @, H are the correct ones, one

'\

compare how well the 10 values of these coefficients agree.
As an indication, we give a few results obtained, with

e 7 PPN

8-decimal accuracy machine computations, in Case I, Chapter 3,

PART I. In this case a=12, b=10, C=D, G=H, R, (x)-RA(x) Besides

D and H , the values of R (x) for x=12 and x=14 are given for the 2
first five functions: V-la3,5 7+9. R,(x) 18 not given, since 1t §

is included in (1-80), defining Ra(xf. x=12 and x=14 fall in the
overlapping region between the convergent series (1-80) for R,(x)
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and the asymptotic series (2-223): Rg(x)ée““é/4EGR3(x)+HR4(x)j

yielding values of ﬁé(x) through G, H and the asymptotic series

(1-94) for Rg(x) end R,(x). Both values of Ré(x) are given for
¢comparison. ’

v D H

4.14617=14.06427 =252.508=1265.563

1

3 -133.193+1117.365  898.741+11306.918

5 (1.24526-10.965800) -10% (=0.875955=14.30989) -10%
(=2.32660+11.5730) - 10° (=2.05026+13 . 83348) + 108

(7.2577=14.2497) 108 (10.0441-17. 42212) +10°

v x Rp(x) from (1-80) Rp(x) from (2-2223)
12 38.0483 38.1064

14 114.081 114,082

i
|
i
b

) 12 =327.000 =326.902
> 14 ~401.884 ~401.875
12 1. 46444.10% 1.46278.10%
5 14 7.44758+10° 7.44795.10°
6

12 -1.95279-10° ~1.95571-10°
7 14 ~2.95473+10° =2.95481+10°

12 4.80712:10° 4.80351-10°

9 14 ~3.75249.108 -3,75230-10°

For x=14, falling roughly in the middle of the overlapping region

in this case, the agreement is good up to five significant
decimals.
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CHAPTER 3

REMARKS AND GENERALIZATIONS

The analysis given in the previous c¢hapters led to the
complete solution of the problem for the speclial form! ?(x)ﬁ %%%W
of the stratification function. The complexity of the problem
depends exclusively on the form of q(x), géince it is this form
which determines the number and nature of the singularities of the
radial equation (I 1=42). There are three other forms of ¢(x)

for which the method used for ?(x = %%% can be readily applied.

They are given below, together with the differential equation
into which (I 1-42) reduces, respectively:

¢ (x)=[£22)2 . |
. 2(a=b v(v+l) _ L
R"(x)+ oy R'(x )+[(:Ig iy JR(x) =0 (3-1)

x—-té . 11¢ ¢ g— € - m

]R(z)- 0 (3=-2)

R"(z)+[;é + *ﬂ—————!!-] "(2)+[~ V(V
T 722 (24a) (24b) 4Z(Z¥b) 42-

2., . :

?(x)giiézgjg s put: x°= 2 ' ?(g); [éiijg

X 2(a=b) IR (2)+[~ (2+a) = V(v+1)] (3)= 0 (3-3)
IR i R(z)= -

(z+a)(z+b) ' l&z(z+b)2 422 2 33

R (2)+[

J&)IH [og

All the agbove forme of @(x) represent stratifications similar to

P(x)= ff%. as shown in figure (1-1), PART I. The essential point
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is that the radlal aifferential equation for TM waves cbtalned in
all cases, has the sameé number and nature of singularities as
(I 1<50). More specifically, three regular singularities at the
finite x (or z) plane (one at x=0, or 2=0) and an irregular
8ingularity of the first rank at eo . In the last two cases the
solutions around 2= become subnormal in nature (9 pp. 417-428
168171, 10 pp: 63~64), but the modifications required are
elemeritary. The corresponding difference equation (II 2=5) can

again be solved along identical lines. Ford's method can be

asymptotic expansions required ( 7 Chapt. VIII). In addition to
Ford's Theorems I and VI, used in the preceding analysis, we may
similar theorems contained in his book. In the last chapter,
refererice 7, relative examples are included, showing that the
method applies without essential modifications. It must be pointed
out that the analysis presented in the previous chapters, has
modified and generalized Ford's method in two directions. It has
provided general expressions for the coefficients C, D and G, H
depending only on one solution of the adjoint difference equation
(II 2-137). And, mainly, 1t has dealt successfully with the case
of integral values for the difference of exponents (i.e. when
2v+l 1s equal to a positive inteder), almost always present,
directly or indirectly, 1in all physical problems. Both these
generalizations are applicable in the last two cases (3-=2) and
(3-3).

The modification of Ford's method, to which we just referred,
consists of introduclng, in place of x, the varliable y=x+0 and

of y. The parameter o 1s always present in Ford's work (called h)
and makes the extension of the analysis to integral values for
2v+l almost impossible. By introducing y we eliminate this para-

meter, without rendering the method inapplicable; at the same time
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we are able to extend 1t easily to the case when 2v+l takes on
integral values.

The question that finally arises 1s whether the analysis
developed in the preceding chapters can be applied successfully
to more general typés of stratification; for instance, to ?(2)
varying in a manner similar to figure (3-1).

Figure 3<1. More general forms for ?(x).

Almost always, (except in trivial cases), the answer depends
on the nature and number of singularities that are introduced in
equation (I 1-42). The point is lllustrated by mentlioning certain
cagses where the method fails. If irregular singularities are

fact that power serles solutions can still be found, Ford's
theory for obtaining their asymptotic expansions 1is no longer

applicable ( 7 Chapt. VIII). The difference equation (II 2-5) is
no longer normal and its solutions are of such complexity, that
no corresponding theorems (like I, VI, or the rest of Ford's

theorems) exist, which can bs applied to these solutions to yleld



the asymptotic expansions or R, (x), Rg(x). A case like this

arises, if ¢(x) = [——’;}:Jn » nz3 and this is the reason why it

was not inecluded in the previous 1list (3=1) to (3=3). It is
easily seen that x==a and x=-b are irregular singular points
(I 1=42).

Another case, where the method fails, arises, 1f the singu=
larity at x=oc0 (or at least z=o0, if we must resort to the

o
L )

FRRUmTRE

Lo -

change of variable xsx(z) )s; has a rank higher than 1. Normal
asymptotic series for Ry(x), R,(x) can still be obtained, in
general, but Ford's theory again fails ( 7 pp. 339=341), owing to
the complexity of the solutions of the difference equation or to
the impossibility of even solving it.

Another case arises, if the number of finite regular singu-
laritles is large or infinite. For example, &(X) = 1+aé‘bx,
(b>0); the coefficient c‘p’(x)‘/cf(x)‘ of R/(x) in (I 1=42) becomes:
a5 =DX i
sabe— - . -8R apg introduces an infinite number of regular
l+ae ase
singularities, at the zeros of e
Furthermore, in this case, the irregular polnt x=co0 can not be
assigned a finite rank.

In practice such cases can be treated either numerically or
by approximating the function ¢(x) by more simple functions. The
numerical results in Chapter 3, PART I, showed that this approxi-
mation 1s valid and permissible. For sharper variations of a more
complicated nature, one may divide the interval 0 x£eo0 into a
finite number of shorter intervals. The problem then i1s somewhat
similar to stratification by layers, requiring additional matching
processes at each spherical boundary separating regions of
different functional representation for ?(x).

If the stratification terminates at a finite distance x,
series solutions may be sufficient, as 1t has already been pointed

out; anyway, the problem can be classified as a special case of

i
L

bx*a, in the complex x-plane.
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stratification by layers.

It must also be pointed out that there are problems where
these waves 1s more simple than equation (I 1=42) for TM waves.
In certain cases, the former equation can be solved, while the
latter can not. An example is mentioned in reference 2, but it
refers to a finlte interval.

With these remarks in mind we can answer the question raised

(for problems requiring solution in the whole interval 0&x&s),
stratification functions @(x) as long ast

1) No finite irregular singularities are introduced in equation
(I 1=42).

2) The rank of the irregular singularity at x or z=e does not
become higher than 1; in general, this requirement 18 more
easily satisfied than the preceding one, since in all
physical problems, q(x) must reduce to 1, or a finite
conatant, at x or z=0d.

3) The number of regular singular points introduced in the
finite x (or z) plane is reasonably small and permits the

use of a bilinear change of variable x (or z) = %%%% » which

maps the interval of interest in the x=plane (in real cases
t-plane, placing all the other singularities of the equation
outeide this circle. This last restriction is not as funda-
mental as the first two, but, from the computational point
of view, 1t marks the difference between the possibility of
an analytical or completely numerical solution to the
problem.
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